Lively Kevin, Albareda Guillermo, Sato Shunsuke A, Kelly Aaron, Rubio Angel
Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
Institute of Theoretical and Computational Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
J Phys Chem Lett. 2021 Apr 1;12(12):3074-3081. doi: 10.1021/acs.jpclett.1c00073. Epub 2021 Mar 22.
We show how linear vibronic spectra in molecular systems can be simulated efficiently using first-principles approaches without relying on the explicit use of multiple Born-Oppenheimer potential energy surfaces. We demonstrate and analyze the performance of mean-field and beyond-mean-field dynamics techniques for the H molecule in one dimension, in the later case capturing the vibronic structure quite accurately, including quantum Franck-Condon effects. In a practical application of this methodology we simulate the absorption spectrum of benzene in full dimensionality using time-dependent density functional theory at the multitrajectory Ehrenfest level, finding good qualitative agreement with experiment and significant spectral reweighting compared to commonly used single-trajectory Ehrenfest dynamics. These results form the foundation for nonlinear spectral calculations and show promise for future application in capturing phenomena associated with vibronic coupling in more complex molecular and potentially condensed phase systems.
我们展示了如何使用第一性原理方法有效地模拟分子系统中的线性振转光谱,而无需明确使用多个玻恩-奥本海默势能面。我们演示并分析了一维氢分子的平均场和超越平均场动力学技术的性能,在后一种情况下能够相当准确地捕捉振转结构,包括量子弗兰克-康登效应。在该方法的实际应用中,我们使用多轨迹埃伦费斯特水平的含时密度泛函理论在全维度上模拟了苯的吸收光谱,发现与实验结果在定性上有良好的一致性,并且与常用的单轨迹埃伦费斯特动力学相比有显著的光谱重加权。这些结果为非线性光谱计算奠定了基础,并显示出在未来应用于捕捉更复杂分子以及潜在凝聚相系统中与振转耦合相关现象的前景。