Li Lixin, Losser Travis, Yorke Charles, Piltner Reinhard
Department of Computer Sciences, Georgia Southern University, Statesboro, GA 30460, USA.
Department of Geosciences, Murray State University, Murray, KY 42071, USA.
Int J Environ Res Public Health. 2014 Sep 3;11(9):9101-41. doi: 10.3390/ijerph110909101.
Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation results.
流行病学研究已经确定了死亡率与颗粒物浓度变化之间的关联。这些研究凸显了公众对颗粒物空气污染对健康影响的担忧。对细颗粒物PM2.5暴露风险进行建模并监测PM2.5浓度的日常变化,是理解污染问题并采取必要补救措施的关键一步。本研究设计、实施并比较了两种基于反距离加权(IDW)的时空插值方法,以评估2009年美国本土在普查街区组层面和县级层面上每日PM2.5浓度的趋势。传统上,在处理时空插值时,研究人员倾向于将空间和时间分开处理,并将时空插值问题简化为一系列空间插值的快照。在本文中,通过所谓的扩展方法,在连续的时空域中同时整合空间和时间,进行PM2.5数据插值。在假设时空维度在对时空域中连续变化现象进行插值时同样重要的情况下,借助一个因子来计算时间值。通过交叉验证对具有不同参数配置的各种基于IDW的时空插值方法进行评估。此外,本研究探讨了在对海量数据集进行时空插值实施过程中面临的计算问题(计算机处理速度)。本文采用并行编程技术和一种名为k-d树的先进数据结构来应对这些计算挑战,已实现显著的计算改进。最后,设计并实现了一个基于网络的基于时空IDW的插值应用程序,用户可以在其中可视化并动态显示时空插值结果。