Suppr超能文献

一种混合方法来估计美国相邻地区 PM2.5 的国家尺度时空变异性。

A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States.

机构信息

Division of Environmental Health Sciences, University of California, Berkeley, Berkeley, California 94720-1900, United States.

出版信息

Environ Sci Technol. 2013 Jul 2;47(13):7233-41. doi: 10.1021/es400039u. Epub 2013 Jun 11.

Abstract

Airborne fine particulate matter exhibits spatiotemporal variability at multiple scales, which presents challenges to estimating exposures for health effects assessment. Here we created a model to predict ambient particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) across the contiguous United States to be applied to health effects modeling. We developed a hybrid approach combining a land use regression model (LUR) selected with a machine learning method, and Bayesian Maximum Entropy (BME) interpolation of the LUR space-time residuals. The PM2.5 data set included 104,172 monthly observations at 1464 monitoring locations with approximately 10% of locations reserved for cross-validation. LUR models were based on remote sensing estimates of PM2.5, land use and traffic indicators. Normalized cross-validated R(2) values for LUR were 0.63 and 0.11 with and without remote sensing, respectively, suggesting remote sensing is a strong predictor of ground-level concentrations. In the models including the BME interpolation of the residuals, cross-validated R(2) were 0.79 for both configurations; the model without remotely sensed data described more fine-scale variation than the model including remote sensing. Our results suggest that our modeling framework can predict ground-level concentrations of PM2.5 at multiple scales over the contiguous U.S.

摘要

空气中的细颗粒物在多个尺度上表现出时空变异性,这给评估健康影响的暴露量估计带来了挑战。在这里,我们创建了一个模型来预测整个美国的空气动力学直径小于 2.5μm 的环境颗粒物(PM2.5),以便应用于健康影响模型。我们开发了一种混合方法,结合了机器学习方法选择的土地利用回归模型(LUR)和 LUR 时空残差的贝叶斯最大熵(BME)插值。PM2.5 数据集包括 1464 个监测点的 104,172 个每月观测值,其中约 10%的监测点用于交叉验证。LUR 模型基于 PM2.5、土地利用和交通指标的遥感估计。有和没有遥感的 LUR 的归一化交叉验证 R(2)值分别为 0.63 和 0.11,这表明遥感是地面浓度的有力预测因子。在包括残差 BME 插值的模型中,两种配置的交叉验证 R(2)值均为 0.79;不包括遥感数据的模型比包括遥感数据的模型描述了更细粒度的变化。我们的结果表明,我们的建模框架可以预测美国大陆多个尺度的 PM2.5 地面浓度。

相似文献

1
A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States.
Environ Sci Technol. 2013 Jul 2;47(13):7233-41. doi: 10.1021/es400039u. Epub 2013 Jun 11.
4
An LUR/BME framework to estimate PM2.5 explained by on road mobile and stationary sources.
Environ Sci Technol. 2014;48(3):1736-44. doi: 10.1021/es4040528. Epub 2014 Jan 15.
7
A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda.
Environ Res. 2021 Aug;199:111352. doi: 10.1016/j.envres.2021.111352. Epub 2021 May 24.
9
Spatial PM, NO, O and BC models for Western Europe - Evaluation of spatiotemporal stability.
Environ Int. 2018 Nov;120:81-92. doi: 10.1016/j.envint.2018.07.036. Epub 2018 Jul 31.
10
Using a land use regression model with machine learning to estimate ground level PM.
Environ Pollut. 2021 May 15;277:116846. doi: 10.1016/j.envpol.2021.116846. Epub 2021 Mar 1.

引用本文的文献

1
Patterns Discovery Dataset for Particulate Matter (PM) Pollution Trends in Japan.
Sci Data. 2025 Jun 16;12(1):1009. doi: 10.1038/s41597-025-05195-2.
2
Air Pollution and Autism Spectrum Disorder: Unveiling Multipollutant Risks and Sociodemographic Influences in California.
Environ Health Perspect. 2025 Jun;133(6):67010. doi: 10.1289/EHP15573. Epub 2025 Jun 12.
5
Multiresolution Analysis of HRRR Meteorological Parameters and GOES-R AOD for Hourly PM Prediction.
Environ Sci Technol. 2024 Nov 12;58(45):20040-20048. doi: 10.1021/acs.est.4c03795. Epub 2024 Nov 1.
6
Examining air pollution exposure dynamics in disadvantaged communities through high-resolution mapping.
Sci Adv. 2024 Aug 9;10(32):eadm9986. doi: 10.1126/sciadv.adm9986. Epub 2024 Aug 7.
7
Unmasking the sky: high-resolution PM prediction in Texas using machine learning techniques.
J Expo Sci Environ Epidemiol. 2024 Sep;34(5):814-820. doi: 10.1038/s41370-024-00659-w. Epub 2024 Apr 1.
8
Air pollution accountability research: Moving from a chain to a web.
Glob Epidemiol. 2023 Nov 15;6:100128. doi: 10.1016/j.gloepi.2023.100128. eCollection 2023 Dec.
9
Advancing application of satellite remote sensing technologies for linking atmospheric and built environment to health.
Front Public Health. 2023 Nov 15;11:1270033. doi: 10.3389/fpubh.2023.1270033. eCollection 2023.
10
National Exposure Models for Source-Specific Primary Particulate Matter Concentrations Using Aerosol Mass Spectrometry Data.
Environ Sci Technol. 2022 Oct 18;56(20):14284-14295. doi: 10.1021/acs.est.2c03398. Epub 2022 Sep 26.

本文引用的文献

1
Optimal Spatial Prediction Using Ensemble Machine Learning.
Int J Biostat. 2016 May 1;12(1):179-201. doi: 10.1515/ijb-2014-0060.
2
A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.
Environ Ecol Stat. 2014 Sep;21(3):411-433. doi: 10.1007/s10651-013-0261-4.
6
Monitoring air pollution: use of early warning systems for public health.
Respirology. 2012 Jan;17(1):7-19. doi: 10.1111/j.1440-1843.2011.02065.x.
7
National satellite-based land-use regression: NO2 in the United States.
Environ Sci Technol. 2011 May 15;45(10):4407-14. doi: 10.1021/es103578x. Epub 2011 Apr 26.
8
Creating national air pollution models for population exposure assessment in Canada.
Environ Health Perspect. 2011 Aug;119(8):1123-9. doi: 10.1289/ehp.1002976. Epub 2011 Mar 31.
9
Modeling spatial patterns of traffic-related air pollutants in complex urban terrain.
Environ Health Perspect. 2011 Jun;119(6):852-9. doi: 10.1289/ehp.1002519. Epub 2011 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验