Division of Environmental Health Sciences, University of California, Berkeley, Berkeley, California 94720-1900, United States.
Environ Sci Technol. 2013 Jul 2;47(13):7233-41. doi: 10.1021/es400039u. Epub 2013 Jun 11.
Airborne fine particulate matter exhibits spatiotemporal variability at multiple scales, which presents challenges to estimating exposures for health effects assessment. Here we created a model to predict ambient particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) across the contiguous United States to be applied to health effects modeling. We developed a hybrid approach combining a land use regression model (LUR) selected with a machine learning method, and Bayesian Maximum Entropy (BME) interpolation of the LUR space-time residuals. The PM2.5 data set included 104,172 monthly observations at 1464 monitoring locations with approximately 10% of locations reserved for cross-validation. LUR models were based on remote sensing estimates of PM2.5, land use and traffic indicators. Normalized cross-validated R(2) values for LUR were 0.63 and 0.11 with and without remote sensing, respectively, suggesting remote sensing is a strong predictor of ground-level concentrations. In the models including the BME interpolation of the residuals, cross-validated R(2) were 0.79 for both configurations; the model without remotely sensed data described more fine-scale variation than the model including remote sensing. Our results suggest that our modeling framework can predict ground-level concentrations of PM2.5 at multiple scales over the contiguous U.S.
空气中的细颗粒物在多个尺度上表现出时空变异性,这给评估健康影响的暴露量估计带来了挑战。在这里,我们创建了一个模型来预测整个美国的空气动力学直径小于 2.5μm 的环境颗粒物(PM2.5),以便应用于健康影响模型。我们开发了一种混合方法,结合了机器学习方法选择的土地利用回归模型(LUR)和 LUR 时空残差的贝叶斯最大熵(BME)插值。PM2.5 数据集包括 1464 个监测点的 104,172 个每月观测值,其中约 10%的监测点用于交叉验证。LUR 模型基于 PM2.5、土地利用和交通指标的遥感估计。有和没有遥感的 LUR 的归一化交叉验证 R(2)值分别为 0.63 和 0.11,这表明遥感是地面浓度的有力预测因子。在包括残差 BME 插值的模型中,两种配置的交叉验证 R(2)值均为 0.79;不包括遥感数据的模型比包括遥感数据的模型描述了更细粒度的变化。我们的结果表明,我们的建模框架可以预测美国大陆多个尺度的 PM2.5 地面浓度。