Pires Nuno Miguel Matos, Dong Tao, Hanke Ulrik, Hoivik Nils
IMST-Department of Micro- and Nanosystems Technology, Faculty of Technology and Maritime Sciences, Buskerud and Vestfold University College, Postboks 235, 3603 Kongsberg, Norway.
Sensors (Basel). 2014 Aug 21;14(8):15458-79. doi: 10.3390/s140815458.
The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conventional instrumentation with microfluidic structures, and (b) integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.
微流控领域尚未开发出具有实际临床价值的实用设备。造成这种情况的主要原因之一是难以实现低成本、高灵敏度、可重复且便携的分析物检测微流控系统。先前的研究主要探讨了芯片实验室设备中检测技术的两种主要方法:(a)研究传统仪器与微流控结构的兼容性,以及(b)微流控系统中所含创新传感器的集成。尽管基于电化学和机械的传感器最近取得了进展,但其缺点对其在一次性微流控设备中的应用构成了重大挑战。相反,光学检测仍然是芯片实验室设备的一个有吸引力的解决方案,因为光学方法在实验室中无处不在。此外,通过在芯片上集成适当的光学检测技术,可以实现用于现场的坚固且经济高效的设备。本综述考察了应用于微流控生物传感器的检测技术的最新进展,特别介绍了几种光学方法,包括荧光、化学发光、吸光度和表面等离子体共振。