Suppr超能文献

使用足部惯性传感器估计步行速度:比较机器学习和捷联积分方法。

Walking speed estimation using foot-mounted inertial sensors: comparing machine learning and strap-down integration methods.

作者信息

Mannini Andrea, Sabatini Angelo Maria

机构信息

The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.

The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.

出版信息

Med Eng Phys. 2014 Oct;36(10):1312-21. doi: 10.1016/j.medengphy.2014.07.022. Epub 2014 Sep 5.

Abstract

In this paper we implemented machine learning (ML) and strap-down integration (SDI) methods and analyzed them for their capability of estimating stride-by-stride walking speed. Walking speed was computed by dividing estimated stride length by stride time using data from a foot mounted inertial measurement unit. In SDI methods stride-by-stride walking speed estimation was driven by detecting gait events using a hidden Markov model (HMM) based method (HMM-based SDI); alternatively, a threshold-based gait event detector was investigated (threshold-based SDI). In the ML method a linear regression model was developed for stride length estimation. Whereas the gait event detectors were a priori fixed without training, the regression model was validated with leave-one-subject-out cross-validation. A subject-specific regression model calibration was also implemented to personalize the ML method. Healthy adults performed over-ground walking trials at natural, slower-than-natural and faster-than-natural speeds. The ML method achieved a root mean square estimation error of 2.0% and 4.2%, with and without personalization, against 2.0% and 3.1% by HMM-based SDI and threshold-based SDI. In spite that the results achieved by the two approaches were similar, the ML method, as compared with SDI methods, presented lower intra-subject variability and higher inter-subject variability, which was reduced by personalization.

摘要

在本文中,我们实现了机器学习(ML)和捷联积分(SDI)方法,并分析了它们逐步估计步行速度的能力。使用来自足部惯性测量单元的数据,通过将估计的步长除以步幅时间来计算步行速度。在SDI方法中,逐步步行速度估计是通过使用基于隐马尔可夫模型(HMM)的方法(基于HMM的SDI)检测步态事件来驱动的;另外,还研究了基于阈值的步态事件检测器(基于阈值的SDI)。在ML方法中,开发了用于步长估计的线性回归模型。虽然步态事件检测器是预先固定的,无需训练,但回归模型通过留一法交叉验证进行了验证。还实施了特定于受试者的回归模型校准,以使ML方法个性化。健康成年人以自然、低于自然和高于自然的速度进行了地面行走试验。ML方法在有和没有个性化的情况下,均方根估计误差分别为2.0%和4.2%,而基于HMM的SDI和基于阈值的SDI分别为2.0%和3.1%。尽管两种方法取得的结果相似,但与SDI方法相比,ML方法表现出较低的受试者内变异性和较高的受试者间变异性,而个性化可降低这种变异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验