Ghosh Soumitra, Mallick Bratati, Nagaraja Valakunja
Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India.
Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560012, India Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
Nucleic Acids Res. 2014;42(17):11156-65. doi: 10.1093/nar/gku804. Epub 2014 Sep 8.
The topological homeostasis of bacterial chromosomes is maintained by the balance between compaction and the topological organization of genomes. Two classes of proteins play major roles in chromosome organization: the nucleoid-associated proteins (NAPs) and topoisomerases. The NAPs bind DNA to compact the chromosome, whereas topoisomerases catalytically remove or introduce supercoils into the genome. We demonstrate that HU, a major NAP of Mycobacterium tuberculosis specifically stimulates the DNA relaxation ability of mycobacterial topoisomerase I (TopoI) at lower concentrations but interferes at higher concentrations. A direct physical interaction between M. tuberculosis HU (MtHU) and TopoI is necessary for enhancing enzyme activity both in vitro and in vivo. The interaction is between the amino terminal domain of MtHU and the carboxyl terminal domain of TopoI. Binding of MtHU did not affect the two catalytic trans-esterification steps but enhanced the DNA strand passage, requisite for the completion of DNA relaxation, a new mechanism for the regulation of topoisomerase activity. An interaction-deficient mutant of MtHU was compromised in enhancing the strand passage activity. The species-specific physical and functional cooperation between MtHU and TopoI may be the key to achieve the DNA relaxation levels needed to maintain the optimal superhelical density of mycobacterial genomes.
细菌染色体的拓扑稳态是通过基因组压缩与拓扑组织之间的平衡来维持的。两类蛋白质在染色体组织中起主要作用:类核相关蛋白(NAPs)和拓扑异构酶。NAPs结合DNA以压缩染色体,而拓扑异构酶催化性地去除或向基因组中引入超螺旋。我们证明,结核分枝杆菌的主要NAP即HU,在较低浓度下特异性刺激结核分枝杆菌拓扑异构酶I(TopoI)的DNA松弛能力,但在较高浓度下会产生干扰。结核分枝杆菌HU(MtHU)与TopoI之间的直接物理相互作用对于在体外和体内增强酶活性都是必需的。这种相互作用发生在MtHU的氨基末端结构域与TopoI的羧基末端结构域之间。MtHU的结合并不影响两个催化性转酯步骤,但增强了DNA链通过,这是DNA松弛完成所必需的,这是一种调节拓扑异构酶活性的新机制。MtHU的相互作用缺陷型突变体在增强链通过活性方面存在缺陷。MtHU与TopoI之间物种特异性的物理和功能协同作用可能是实现维持结核分枝杆菌基因组最佳超螺旋密度所需的DNA松弛水平的关键。