Suppr超能文献

使用广义概率方法控制无标度网络。

Dominating scale-free networks using generalized probabilistic methods.

机构信息

1] Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590 USA [2] Social Cognitive Networks Academic Research Center, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590 USA.

1] Department of Mathematics, University of South Carolina, 1523 Greene Street, Columbia, SC, 29208 USA [2] Interdisciplinary Mathematics Institute, University of South Carolina, 1523 Greene Street, Columbia, SC, 29208 USA.

出版信息

Sci Rep. 2014 Sep 9;4:6308. doi: 10.1038/srep06308.

Abstract

We study ensemble-based graph-theoretical methods aiming to approximate the size of the minimum dominating set (MDS) in scale-free networks. We analyze both analytical upper bounds of dominating sets and numerical realizations for applications. We propose two novel probabilistic dominating set selection strategies that are applicable to heterogeneous networks. One of them obtains the smallest probabilistic dominating set and also outperforms the deterministic degree-ranked method. We show that a degree-dependent probabilistic selection method becomes optimal in its deterministic limit. In addition, we also find the precise limit where selecting high-degree nodes exclusively becomes inefficient for network domination. We validate our results on several real-world networks, and provide highly accurate analytical estimates for our methods.

摘要

我们研究基于集合的图论方法,旨在逼近无标度网络中的最小支配集 (MDS) 的大小。我们分析了支配集的分析上限和应用的数值实现。我们提出了两种适用于异构网络的新颖的概率支配集选择策略。其中一种方法获得了最小的概率支配集,并且优于确定性度排名方法。我们表明,一个依赖度的概率选择方法在其确定性极限下是最优的。此外,我们还找到了一个精确的极限,在这个极限下,只选择高度数节点对于网络支配来说是低效的。我们在几个真实网络上验证了我们的结果,并为我们的方法提供了高度精确的分析估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f24d/4158322/15673805f4fe/srep06308-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验