Suppr超能文献

固定异构阈值下的影响力最大化

Influence Maximization for Fixed Heterogeneous Thresholds.

作者信息

Karampourniotis P D, Szymanski B K, Korniss G

机构信息

Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA.

Social Cognitive Networks Academic Research Center, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA.

出版信息

Sci Rep. 2019 Apr 3;9(1):5573. doi: 10.1038/s41598-019-41822-w.

Abstract

Influence Maximization is a NP-hard problem of selecting the optimal set of influencers in a network. Here, we propose two new approaches to influence maximization based on two very different metrics. The first metric, termed Balanced Index (BI), is fast to compute and assigns top values to two kinds of nodes: those with high resistance to adoption, and those with large out-degree. This is done by linearly combining three properties of a node: its degree, susceptibility to new opinions, and the impact its activation will have on its neighborhood. Controlling the weights between those three terms has a huge impact on performance. The second metric, termed Group Performance Index (GPI), measures performance of each node as an initiator when it is a part of randomly selected initiator set. In each such selection, the score assigned to each teammate is inversely proportional to the number of initiators causing the desired spread. These two metrics are applicable to various cascade models; here we test them on the Linear Threshold Model with fixed and known thresholds. Furthermore, we study the impact of network degree assortativity and threshold distribution on the cascade size for metrics including ours. The results demonstrate our two metrics deliver strong performance for influence maximization.

摘要

影响力最大化是一个在网络中选择最优影响者集合的NP难问题。在此,我们基于两种截然不同的度量标准提出了两种新的影响力最大化方法。第一种度量标准称为平衡指数(BI),计算速度快,并将最高值赋予两类节点:对采用具有高抗性的节点,以及具有大出度的节点。这是通过线性组合节点的三个属性来实现的:其度、对新观点的敏感性,以及其激活对其邻域的影响。控制这三个项之间的权重对性能有巨大影响。第二种度量标准称为群体绩效指数(GPI),当每个节点作为随机选择的发起者集合的一部分时,测量其作为发起者的绩效。在每次这样的选择中,分配给每个队友的分数与导致期望传播的发起者数量成反比。这两种度量标准适用于各种级联模型;在此我们在具有固定和已知阈值的线性阈值模型上对它们进行测试。此外,我们研究了网络度相关性和阈值分布对包括我们的度量标准在内的级联规模的影响。结果表明我们的两种度量标准在影响力最大化方面具有强大的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f32/6447584/9ca62363daf9/41598_2019_41822_IEq1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验