Sprague Thomas C, Ester Edward F, Serences John T
Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0109, USA.
Department of Psychology, University of California, San Diego, La Jolla, CA 92093-0109, USA.
Curr Biol. 2014 Sep 22;24(18):2174-2180. doi: 10.1016/j.cub.2014.07.066. Epub 2014 Sep 4.
Working memory (WM) enables the maintenance and manipulation of information relevant to behavioral goals. Variability in WM ability is strongly correlated with IQ [1], and WM function is impaired in many neurological and psychiatric disorders [2, 3], suggesting that this system is a core component of higher cognition. WM storage is thought to be mediated by patterns of activity in neural populations selective for specific properties (e.g., color, orientation, location, and motion direction) of memoranda [4-13]. Accordingly, many models propose that differences in the amplitude of these population responses should be related to differences in memory performance [14, 15]. Here, we used functional magnetic resonance imaging and an image reconstruction technique based on a spatial encoding model [16] to visualize and quantify population-level memory representations supported by multivoxel patterns of activation within regions of occipital, parietal and frontal cortex while participants precisely remembered the location(s) of zero, one, or two small stimuli. We successfully reconstructed images containing representations of the remembered-but not forgotten-locations within regions of occipital, parietal, and frontal cortex using delay-period activation patterns. Critically, the amplitude of representations of remembered locations and behavioral performance both decreased with increasing memory load. These results suggest that differences in visual WM performance between memory load conditions are mediated by changes in the fidelity of large-scale population response profiles distributed across multiple areas of human cortex.
工作记忆(WM)能够维持和处理与行为目标相关的信息。工作记忆能力的个体差异与智商密切相关[1],并且在许多神经和精神疾病中工作记忆功能受损[2,3],这表明该系统是高级认知的核心组成部分。人们认为工作记忆存储是由对记忆特定属性(如颜色、方向、位置和运动方向)具有选择性的神经群体的活动模式介导的[4-13]。因此,许多模型提出,这些群体反应的幅度差异应与记忆表现的差异相关[14,15]。在这里,我们使用功能磁共振成像和基于空间编码模型的图像重建技术[16],在参与者精确记住零个、一个或两个小刺激的位置时,可视化并量化枕叶、顶叶和额叶皮质区域内多体素激活模式所支持的群体水平记忆表征。我们使用延迟期激活模式成功重建了包含枕叶、顶叶和额叶皮质区域内记忆位置(而非遗忘位置)表征的图像。至关重要的是,记忆位置的表征幅度和行为表现均随着记忆负荷的增加而降低。这些结果表明,记忆负荷条件之间视觉工作记忆表现的差异是由分布在人类皮质多个区域的大规模群体反应概况的保真度变化介导的。