School of Physics, Georgia Institute of Technology, Atlanta, GA 30332; and.
Departmento de Ingenieria Aereoespacial y Mecanica de Fluidos, University of Sevilla, Sevilla 41092, Spain.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13763-7. doi: 10.1073/pnas.1411698111. Epub 2014 Sep 8.
We apply an electric field to a moderately conducting liquid surrounded by another coflowing liquid, all inside a glass-based microfluidic device, to study nonaxisymmetric instabilities. We find that the bending of the electrified jet results in a steady-state, helicoidal structure with a constant opening angle. Remarkably, the characteristic phase speed of the helicoidal wave only depends on the charge carried by the jet in the helicoidal region and its stability critically depends on the properties of the coflowing liquid. In fact, the steady-state helical structure becomes chaotic when the longest characteristic time is that of the inner liquid rather than that of the outer coflowing liquid. We also perform a numerical analysis to show that the natural preference of the jet is to adopt the conical helix structure observed experimentally.
我们在一个基于玻璃的微流控装置中,对被另一个同向流液体包围的中等导电性液体施加电场,以研究非轴对称不稳定性。我们发现,通电射流的弯曲导致了一种稳定的、螺旋状的结构,其开口角度保持不变。值得注意的是,螺旋波的特征相速度仅取决于螺旋区域内射流所携带的电荷,其稳定性关键取决于同向流液体的性质。事实上,当稳态螺旋结构的最长特征时间是内部液体而不是外部同向流液体的特征时间时,它会变得混沌。我们还进行了数值分析,表明射流自然倾向于采用实验中观察到的锥形螺旋结构。