Suppr超能文献

天冬氨酸-52与天冬氨酸-398共同作用,在伴侣蛋白GroEL的ATP水解过程中发挥关键作用。

Asp-52 in combination with Asp-398 plays a critical role in ATP hydrolysis of chaperonin GroEL.

作者信息

Koike-Takeshita Ayumi, Mitsuoka Kaoru, Taguchi Hideki

机构信息

From the Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan.

Technology Research Association for Next Generation Natural Products Chemistry, AIST Tokyo Waterfront, 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan, and.

出版信息

J Biol Chem. 2014 Oct 24;289(43):30005-11. doi: 10.1074/jbc.M114.593822. Epub 2014 Sep 8.

Abstract

The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists protein folding with the aid of GroES and ATP. Asp-398 in GroEL is known as one of the critical residues on ATP hydrolysis because GroEL(D398A) mutant is deficient in ATP hydrolysis (<2% of the wild type) but not in ATP binding. In the archaeal Group II chaperonin, another aspartate residue, Asp-52 in the corresponding E. coli GroEL, in addition to Asp-398 is also important for ATP hydrolysis. We investigated the role of Asp-52 in GroEL and found that ATPase activity of GroEL(D52A) and GroEL(D52A/D398A) mutants was ∼ 20% and <0.01% of wild-type GroEL, respectively, indicating that Asp-52 in E. coli GroEL is also involved in the ATP hydrolysis. GroEL(D52A/D398A) formed a symmetric football-shaped GroEL-GroES complex in the presence of ATP, again confirming the importance of the symmetric complex during the GroEL ATPase cycle. Notably, the symmetric complex of GroEL(D52A/D398A) was extremely stable, with a half-time of ∼ 150 h (∼ 6 days), providing a good model to characterize the football-shaped complex.

摘要

大肠杆菌伴侣蛋白GroEL是一种双环伴侣蛋白,它借助GroES和ATP协助蛋白质折叠。GroEL中的天冬氨酸398(Asp-398)是ATP水解的关键残基之一,因为GroEL(D398A)突变体在ATP水解方面存在缺陷(<野生型的2%),但在ATP结合方面没有缺陷。在古菌II组伴侣蛋白中,除了Asp-398外,大肠杆菌GroEL中对应的另一个天冬氨酸残基Asp-52对ATP水解也很重要。我们研究了Asp-52在GroEL中的作用,发现GroEL(D52A)和GroEL(D52A/D398A)突变体的ATP酶活性分别约为野生型GroEL的20%和<0.01%,这表明大肠杆菌GroEL中的Asp-52也参与ATP水解。在ATP存在的情况下,GroEL(D52A/D398A)形成了对称的足球形GroEL-GroES复合物,再次证实了对称复合物在GroEL ATP酶循环中的重要性。值得注意的是,GroEL(D52A/D398A)的对称复合物极其稳定,半衰期约为150小时(约6天),为表征足球形复合物提供了一个良好的模型。

相似文献

1
Asp-52 in combination with Asp-398 plays a critical role in ATP hydrolysis of chaperonin GroEL.
J Biol Chem. 2014 Oct 24;289(43):30005-11. doi: 10.1074/jbc.M114.593822. Epub 2014 Sep 8.
2
Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant.
J Biol Chem. 2008 Aug 29;283(35):23774-81. doi: 10.1074/jbc.M802542200. Epub 2008 Jun 20.
4
Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
Biochem Biophys Res Commun. 2015 Oct 9;466(1):15-20. doi: 10.1016/j.bbrc.2015.08.034. Epub 2015 Aug 11.
5
Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle.
J Biol Chem. 2008 Aug 29;283(35):23765-73. doi: 10.1074/jbc.M802541200. Epub 2008 Jun 20.
7
Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate.
J Mol Biol. 2015 Sep 11;427(18):2912-8. doi: 10.1016/j.jmb.2015.04.007. Epub 2015 Apr 18.
8
Symmetric GroEL-GroES complexes can contain substrate simultaneously in both GroEL rings.
FEBS Lett. 1997 Mar 24;405(2):195-9. doi: 10.1016/s0014-5793(97)00186-5.
9
GroEL and the GroEL-GroES Complex.
Subcell Biochem. 2017;83:483-504. doi: 10.1007/978-3-319-46503-6_17.

引用本文的文献

1
Pathogenic mutation impairs functional dynamics of Hsp60 in mono- and oligomeric states.
Nat Commun. 2025 Apr 3;16(1):3158. doi: 10.1038/s41467-025-57958-5.
2
Physicochemical Properties of the Mammalian Molecular Chaperone HSP60.
Int J Mol Sci. 2018 Feb 6;19(2):489. doi: 10.3390/ijms19020489.
4
Chaperonin GroEL uses asymmetric and symmetric reaction cycles in response to the concentration of non-native substrate proteins.
Biophys Physicobiol. 2016 Apr 22;13:63-69. doi: 10.2142/biophysico.13.0_63. eCollection 2016.
5
Effects of C-terminal Truncation of Chaperonin GroEL on the Yield of In-cage Folding of the Green Fluorescent Protein.
J Biol Chem. 2015 Jun 12;290(24):15042-51. doi: 10.1074/jbc.M114.633636. Epub 2015 Apr 17.
6
Synergistic effects of ATP and RNA binding to human DEAD-box protein DDX1.
Nucleic Acids Res. 2015 Mar 11;43(5):2813-28. doi: 10.1093/nar/gkv106. Epub 2015 Feb 17.

本文引用的文献

2
Molecular chaperone functions in protein folding and proteostasis.
Annu Rev Biochem. 2013;82:323-55. doi: 10.1146/annurev-biochem-060208-092442.
3
Structure and allostery of the chaperonin GroEL.
J Mol Biol. 2013 May 13;425(9):1476-87. doi: 10.1016/j.jmb.2012.11.028. Epub 2012 Nov 24.
4
Chaperonins: two rings for folding.
Trends Biochem Sci. 2011 Aug;36(8):424-32. doi: 10.1016/j.tibs.2011.05.003. Epub 2011 Jun 30.
5
The heat shock response: life on the verge of death.
Mol Cell. 2010 Oct 22;40(2):253-66. doi: 10.1016/j.molcel.2010.10.006.
6
A systematic survey of in vivo obligate chaperonin-dependent substrates.
EMBO J. 2010 May 5;29(9):1552-64. doi: 10.1038/emboj.2010.52. Epub 2010 Apr 1.
7
Reconciling theories of chaperonin accelerated folding with experimental evidence.
Cell Mol Life Sci. 2010 Jan;67(2):255-76. doi: 10.1007/s00018-009-0164-6. Epub 2009 Oct 23.
8
Setting the chaperonin timer: a two-stroke, two-speed, protein machine.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17339-44. doi: 10.1073/pnas.0807418105. Epub 2008 Nov 6.
10
Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant.
J Biol Chem. 2008 Aug 29;283(35):23774-81. doi: 10.1074/jbc.M802542200. Epub 2008 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验