Peña Luis, Garzón Luis, Galceran Regina, Pomar Alberto, Bozzo Bernat, Konstantinovic Zorica, Sandiumenge Felip, Balcells Lluis, Ocal Carmen, Martinez Benjamin
Instituto de Ciencia de Materiales de Barcelona - CSIC, Campus UAB, 08193 Bellaterra, Spain.
J Phys Condens Matter. 2014 Oct 1;26(39):395010. doi: 10.1088/0953-8984/26/39/395010. Epub 2014 Sep 10.
In this work we report on a combined macro, micro and nanoscale investigation where electronic transport properties through La⅔Sr⅓MnO3 (LSMO) microfabricated bridges, in which nano-sized resistive states are induced by using a conducting scanning probe microscope (C-SPM), are analyzed. The strategy intentionally avoids the standard capacitor-like geometry, thus allowing the study of the electronic transport properties of the locally modified region, and approaches the integration of functional oxides in low dimensional devices while providing macroscopic evidence of nanoscale resistive switching (RS). The metallic and ferromagnetic LSMO is locally modified from its low resistance state (LRS) to a high resistance state (HRS) when a bias voltage is applied on its surface through the conducting tip, which acts as a mobile electrode. Starting from a metallic oxide the electroforming process is not required, thus avoiding one of the major drawbacks for the implementation of memory devices based on RS phenomena. The application of a bias voltage generates an electric field that promotes charge depletion, leading to a strong increase of the resistance, i.e. to the HRS. This effect is not only confined to the outermost surface layer, its spatial extension and final HRS condition can be modulated by the magnitude and duration of the potential applied, opening the door to the implementation of multilevel devices. In addition, the half-metallic character, i.e. total spin polarization, of LSMO might allow the implementation of memory elements and active spintronic devices in the very same material. The stability of the HRS and LRS as a function of temperature, magnetic field and compliance current is also analyzed, allowing the characterization of the nature of the switching process and the active material.
在这项工作中,我们报告了一项结合宏观、微观和纳米尺度的研究,其中分析了通过镧锶锰氧化物(La⅔Sr⅓MnO3,LSMO)微纳加工桥的电子输运特性,该桥中使用导电扫描探针显微镜(C-SPM)诱导出纳米级电阻状态。该策略有意避开了标准的类似电容器的几何结构,从而能够研究局部改性区域的电子输运特性,并在提供纳米级电阻开关(RS)宏观证据的同时,探讨功能氧化物在低维器件中的集成。当通过充当移动电极的导电尖端在其表面施加偏置电压时,金属性和铁磁性的LSMO会从低电阻状态(LRS)局部转变为高电阻状态(HRS)。由于起始材料为金属氧化物,因此不需要电形成过程,从而避免了基于RS现象的存储器件实现过程中的一个主要缺点。施加偏置电压会产生一个促进电荷耗尽的电场,导致电阻大幅增加,即转变为HRS。这种效应不仅局限于最外层表面,其空间扩展和最终的HRS状态可以通过所施加电势的大小和持续时间进行调制,这为多级器件的实现打开了大门。此外,LSMO的半金属特性,即完全自旋极化,可能允许在同一材料中实现存储元件和有源自旋电子器件。还分析了HRS和LRS作为温度、磁场和顺从电流函数的稳定性,从而能够表征开关过程和活性材料的性质。