Xia Weiren, Pei Zhipeng, Leng Kai, Zhu Xinhua
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.
Nanoscale Res Lett. 2020 Jan 13;15(1):9. doi: 10.1186/s11671-019-3243-0.
Perovskite manganites exhibit a broad range of structural, electronic, and magnetic properties, which are widely investigated since the discovery of the colossal magnetoresistance effect in 1994. As compared to the parent perovskite manganite oxides, rare earth-doped perovskite manganite oxides with a chemical composition of LnAMnO (where Ln represents rare earth metal elements such as La, Pr, Nd, A is divalent alkaline earth metal elements such as Ca, Sr, Ba) exhibit much diverse electrical properties due to that the rare earth doping leads to a change of valence states of manganese which plays a core role in the transport properties. There is not only the technological importance but also the need to understand the fundamental mechanisms behind the unusual magnetic and transport properties that attract enormous attention. Nowadays, with the rapid development of electronic devices toward integration and miniaturization, the feature sizes of the microelectronic devices based on rare earth-doped perovskite manganite are down-scaled into nanoscale dimensions. At nanoscale, various finite size effects in rare earth-doped perovskite manganite oxide nanostructures will lead to more interesting novel properties of this system. In recent years, much progress has been achieved on the rare earth-doped perovskite manganite oxide nanostructures after considerable experimental and theoretical efforts. This paper gives an overview of the state of art in the studies on the fabrication, structural characterization, physical properties, and functional applications of rare earth-doped perovskite manganite oxide nanostructures. Our review first starts with the short introduction of the research histories and the remarkable discoveries in the rare earth-doped perovskite manganites. In the second part, different methods for fabricating rare earth-doped perovskite manganite oxide nanostructures are summarized. Next, structural characterization and multifunctional properties of the rare earth-doped perovskite manganite oxide nanostructures are in-depth reviewed. In the following, potential applications of rare earth-doped perovskite manganite oxide nanostructures in the fields of magnetic memory devices and magnetic sensors, spintronic devices, solid oxide fuel cells, magnetic refrigeration, biomedicine, and catalysts are highlighted. Finally, this review concludes with some perspectives and challenges for the future researches of rare earth-doped perovskite manganite oxide nanostructures.
钙钛矿锰氧化物展现出广泛的结构、电子和磁性特性,自1994年发现巨磁电阻效应以来,这些特性受到了广泛研究。与母体钙钛矿锰氧化物相比,化学组成为LnAMnO(其中Ln代表稀土金属元素,如La、Pr、Nd,A是二价碱土金属元素,如Ca、Sr、Ba)的稀土掺杂钙钛矿锰氧化物表现出更为多样的电学特性,这是因为稀土掺杂导致了锰的价态变化,而锰在输运特性中起着核心作用。稀土掺杂钙钛矿锰氧化物不仅具有技术重要性,而且理解其异常磁性和输运特性背后的基本机制也很有必要,这吸引了大量关注。如今,随着电子设备朝着集成化和小型化快速发展,基于稀土掺杂钙钛矿锰氧化物的微电子器件的特征尺寸已缩小到纳米尺度。在纳米尺度下,稀土掺杂钙钛矿锰氧化物纳米结构中的各种有限尺寸效应将导致该体系展现出更有趣的新奇特性。近年来,经过大量的实验和理论研究,稀土掺杂钙钛矿锰氧化物纳米结构取得了很大进展。本文综述了稀土掺杂钙钛矿锰氧化物纳米结构在制备、结构表征、物理性质及功能应用等方面的研究现状。我们的综述首先简要介绍了稀土掺杂钙钛矿锰氧化物的研究历史和显著发现。第二部分总结了制备稀土掺杂钙钛矿锰氧化物纳米结构的不同方法。接下来,对稀土掺杂钙钛矿锰氧化物纳米结构的结构表征和多功能性质进行了深入综述。随后,重点介绍了稀土掺杂钙钛矿锰氧化物纳米结构在磁存储器件和磁传感器、自旋电子器件、固体氧化物燃料电池、磁制冷、生物医学及催化剂等领域的潜在应用。最后,本综述对稀土掺杂钙钛矿锰氧化物纳米结构未来研究的一些观点和挑战进行了总结。