Suppr超能文献

果蝇光感受器中钠钾ATP酶的缺失会导致失明和年龄依赖性神经变性。

Loss of Na(+)/K(+)-ATPase in Drosophila photoreceptors leads to blindness and age-dependent neurodegeneration.

作者信息

Luan Zhuo, Reddig Keith, Li Hong-Sheng

机构信息

Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.

Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.

出版信息

Exp Neurol. 2014 Nov;261:791-801. doi: 10.1016/j.expneurol.2014.08.025. Epub 2014 Sep 7.

Abstract

The activity of Na(+)/K(+)-ATPase establishes transmembrane ion gradients and is essential to cell function and survival. Either dysregulation or deficiency of neuronal Na(+)/K(+)-ATPase has been implicated in the pathogenesis of many neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and rapid-onset dystonia Parkinsonism. However, genetic evidence that directly links neuronal Na(+)/K(+)-ATPase deficiency to in vivo neurodegeneration has been lacking. In this study, we use Drosophila photoreceptors to investigate the cell-autonomous effects of neuronal Na(+)/K(+) ATPase. Loss of ATPα, an α subunit of Na(+)/K(+)-ATPase, in photoreceptors through UAS/Gal4-mediated RNAi eliminated the light-triggered depolarization of the photoreceptors, rendering the fly virtually blind in behavioral assays. Intracellular recordings indicated that ATPα knockdown photoreceptors were already depolarized in the dark, which was due to a loss of intracellular K(+). Importantly, ATPα knockdown resulted in the degeneration of photoreceptors in older flies. This degeneration was independent of light and showed characteristics of apoptotic/hybrid cell death as observed via electron microscopy analysis. Loss of Nrv3, a Na(+)/K(+)-ATPase β subunit, partially reproduced the signaling and degenerative defects observed in ATPα knockdown flies. Thus, the loss of Na(+)/K(+)-ATPase not only eradicates visual function but also causes age-dependent degeneration in photoreceptors, confirming the link between neuronal Na(+)/K(+) ATPase deficiency and in vivo neurodegeneration. This work also establishes Drosophila photoreceptors as a genetic model for studying the cell-autonomous mechanisms underlying neuronal Na(+)/K(+) ATPase deficiency-mediated neurodegeneration.

摘要

钠钾ATP酶的活性建立跨膜离子梯度,对细胞功能和存活至关重要。神经元钠钾ATP酶的失调或缺乏与许多神经退行性疾病如阿尔茨海默病、帕金森病和快速发作性肌张力障碍帕金森综合征的发病机制有关。然而,一直缺乏将神经元钠钾ATP酶缺乏与体内神经退行性变直接联系起来的遗传学证据。在本研究中,我们利用果蝇光感受器来研究神经元钠钾ATP酶的细胞自主效应。通过UAS/Gal4介导的RNA干扰使光感受器中钠钾ATP酶的α亚基ATPα缺失,消除了光感受器的光触发去极化,使果蝇在行为试验中几乎失明。细胞内记录表明,ATPα敲低的光感受器在黑暗中已经去极化,这是由于细胞内钾离子的丧失。重要的是,ATPα敲低导致老年果蝇光感受器的退化。这种退化与光无关,并表现出通过电子显微镜分析观察到的凋亡/混合细胞死亡特征。钠钾ATP酶β亚基Nrv3的缺失部分重现了在ATPα敲低果蝇中观察到的信号和退化缺陷。因此,钠钾ATP酶的缺失不仅消除了视觉功能,还导致光感受器的年龄依赖性退化,证实了神经元钠钾ATP酶缺乏与体内神经退行性变之间的联系。这项工作还将果蝇光感受器确立为一种遗传模型,用于研究神经元钠钾ATP酶缺乏介导的神经退行性变的细胞自主机制。

相似文献

1
Loss of Na(+)/K(+)-ATPase in Drosophila photoreceptors leads to blindness and age-dependent neurodegeneration.
Exp Neurol. 2014 Nov;261:791-801. doi: 10.1016/j.expneurol.2014.08.025. Epub 2014 Sep 7.
2
Cell-type-specific roles of Na+/K+ ATPase subunits in Drosophila auditory mechanosensation.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):181-6. doi: 10.1073/pnas.1208866110. Epub 2012 Dec 17.
6
Developmental changes in beta-subunit composition of Na,K-ATPase in the Drosophila eye.
Cell Tissue Res. 2010 May;340(2):215-28. doi: 10.1007/s00441-010-0948-x. Epub 2010 Mar 25.
7
Autophagy-dependent rhodopsin degradation prevents retinal degeneration in Drosophila.
J Neurosci. 2010 Aug 11;30(32):10703-19. doi: 10.1523/JNEUROSCI.2061-10.2010.
10
Localization of Na/K-ATPase in developing and adult Drosophila melanogaster photoreceptors.
Cell Tissue Res. 2000 May;300(2):239-49. doi: 10.1007/s004410000195.

引用本文的文献

1
Endogenous ceramide phosphoethanolamine modulates circadian rhythm via neural-glial coupling in .
Natl Sci Rev. 2022 Jul 27;9(12):nwac148. doi: 10.1093/nsr/nwac148. eCollection 2022 Dec.
5
TM2D genes regulate Notch signaling and neuronal function in Drosophila.
PLoS Genet. 2021 Dec 14;17(12):e1009962. doi: 10.1371/journal.pgen.1009962. eCollection 2021 Dec.
6
Cell Transplantation to Restore Lost Auditory Nerve Function is a Realistic Clinical Opportunity.
Cell Transplant. 2021 Jan-Dec;30:9636897211035076. doi: 10.1177/09636897211035076.
8
Disturbed Presynaptic Ca Signaling in Photoreceptors in the EAE Mouse Model of Multiple Sclerosis.
iScience. 2020 Nov 20;23(12):101830. doi: 10.1016/j.isci.2020.101830. eCollection 2020 Dec 18.
9
Disrupted Plasma Membrane Protein Homeostasis in a Model of Retinitis Pigmentosa.
J Neurosci. 2019 Jul 10;39(28):5581-5593. doi: 10.1523/JNEUROSCI.3025-18.2019. Epub 2019 May 6.
10
The Contribution of Fluoride to the Pathogenesis of Eye Diseases: Molecular Mechanisms and Implications for Public Health.
Int J Environ Res Public Health. 2019 Mar 8;16(5):856. doi: 10.3390/ijerph16050856.

本文引用的文献

1
Cell-type-specific labeling of synapses in vivo through synaptic tagging with recombination.
Neuron. 2014 Jan 22;81(2):280-93. doi: 10.1016/j.neuron.2013.12.021.
3
Depletion of PtdIns(4,5)P₂ underlies retinal degeneration in Drosophila trp mutants.
J Cell Sci. 2013 Mar 1;126(Pt 5):1247-59. doi: 10.1242/jcs.120592. Epub 2013 Feb 1.
4
Cell-type-specific roles of Na+/K+ ATPase subunits in Drosophila auditory mechanosensation.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):181-6. doi: 10.1073/pnas.1208866110. Epub 2012 Dec 17.
6
Astrocytes modulate neural network activity by Ca²+-dependent uptake of extracellular K+.
Sci Signal. 2012 Apr 3;5(218):ra26. doi: 10.1126/scisignal.2002334.
7
FlyBase 101--the basics of navigating FlyBase.
Nucleic Acids Res. 2012 Jan;40(Database issue):D706-14. doi: 10.1093/nar/gkr1030. Epub 2011 Nov 29.
8
Molecular genetics of retinal degeneration: A Drosophila perspective.
Fly (Austin). 2011 Oct-Dec;5(4):356-68. doi: 10.4161/fly.5.4.17809. Epub 2011 Sep 7.
10
Characterization of Atp1a3 mutant mice as a model of rapid-onset dystonia with parkinsonism.
Behav Brain Res. 2011 Jan 20;216(2):659-65. doi: 10.1016/j.bbr.2010.09.009. Epub 2010 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验