Adv Exp Med Biol. 2014;810:208-33. doi: 10.1007/978-1-4939-0437-2_12.
Skin exposure with UV radiation (UV) is the main cause of skin cancer development. Epidemiological data indicate that excessive or cumulative UV exposure takes place years and decades before the resulting malignancies arise. The most important defense mechanisms that protect human skin against UV radiation involve melanin synthesis and active repair mechanisms. DNA is the major target of direct or indirect UV-induced cellular damage. Low pigmentation capacity in white Caucasians and rare congenital defects in DNA repair are mainly responsible for protection failures. The important function of nucleotide excision DNA repair (NER) to protect against skin cancer becomes obvious by the rare genetic disease xeroderma pigmentosum, in which diverse NER genes are mutated. In animal models, it has been demonstrated that UVB is more effective to induce skin cancer than UVA. UV-induced DNA photoproducts are able to cause specific mutations (UV-signature) in susceptible genes for squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). In SCC development, UV-signature mutations in the p53 tumor suppressor gene are the most common event, as precancerous lesions reveal -80% and SCCs > 90% UV-specific p53 mutations. Mutations in Hedgehog pathway related genes, especially PTCH1, are well known to represent the most significant pathogenic event in BCC. However, specific UV-induced mutations can be found only in -50% of sporadic BCCs. Thus, cumulative UVB radiation cannot be considered to represent the only etiologic risk factor for BCC development. During the last decades, experimental animal models, including genetically engineered mice, the Xiphophorus hybrid fish, the South American oppossum and human skin xenografts, have further elucidated the important role of the DNA repair system in the multi-step process of UV-induced melanomagenesis. An increasing body of evidence now indicates that nucleotide excision repair is not the only DNA repair pathway that is involved in UV-induced tumorigenesis of melanoma and nonmelanoma skin cancer. An interesting new perspective in DNA damage and repair research lies in the participation of mammalian mismatch repair (MMR) in UV damage correction. As MMR enzyme hMSH2 displays a p53 target gene, is induced by UVB radiation and is involved in NER pathways, studies have now been initiated to elucidate the physiological and pathophysiological role of MMR in malignant melanoma and nonmelanoma skin cancer development. Interestingly, increasing evidence now demonstrates an important function of the vitamin D endocrine system (VDES) for prevention of BCC, SCC and melanoma, identifying the vitamin D receptor as a tumor suppressor in the skin.
皮肤暴露于紫外线(UV)辐射是皮肤癌发展的主要原因。流行病学数据表明,过度或累积的 UV 暴露在导致恶性肿瘤出现的几年甚至几十年前就已经发生。保护人类皮肤免受 UV 辐射的最重要的防御机制涉及黑色素合成和主动修复机制。DNA 是直接或间接的 UV 诱导的细胞损伤的主要靶标。白种人中的低色素沉着能力和 DNA 修复的罕见先天性缺陷主要导致保护失败。在罕见的遗传性疾病着色性干皮病中,核苷酸切除 DNA 修复(NER)的重要功能对预防皮肤癌变得明显,其中多种 NER 基因发生突变。在动物模型中,已经证明 UVB 比 UVA 更有效地诱导皮肤癌。UV 诱导的 DNA 光产物能够在鳞状细胞癌(SCC)和基底细胞癌(BCC)易感基因中引起特定的突变(UV 特征)。在 SCC 发展中,p53 肿瘤抑制基因中的 UV 特征突变是最常见的事件,因为癌前病变显示 -80%和 SCC > 90%的 UV 特异性 p53 突变。Hedgehog 通路相关基因,特别是 PTCH1 的突变,被认为是 BCC 中最重要的致病事件。然而,仅在 -50%的散发性 BCC 中才能发现特定的 UV 诱导突变。因此,累积的 UVB 辐射不能被认为是 BCC 发展的唯一病因危险因素。在过去的几十年中,实验动物模型,包括基因工程小鼠、Xiphophorus 杂交鱼、南美负鼠和人皮肤异种移植物,进一步阐明了 DNA 修复系统在 UV 诱导的黑素瘤发生的多步骤过程中的重要作用。越来越多的证据表明,核苷酸切除修复不是唯一参与 UV 诱导的黑色素瘤和非黑色素瘤皮肤癌发生的 DNA 修复途径。在 DNA 损伤和修复研究中一个有趣的新视角是哺乳动物错配修复(MMR)在 UV 损伤修复中的参与。由于 MMR 酶 hMSH2 显示出 p53 靶基因,可被 UVB 辐射诱导,并参与 NER 途径,因此现在已经开始研究 MMR 在恶性黑色素瘤和非黑色素瘤皮肤癌发展中的生理和病理生理作用。有趣的是,越来越多的证据表明维生素 D 内分泌系统(VDES)对预防 BCC、SCC 和黑色素瘤有重要作用,将维生素 D 受体鉴定为皮肤中的肿瘤抑制因子。