Yu Hai-Zhu, Tian Xue-Jiao, Lin Xiang, Hu Guo-Hua, Dang Zhi-Min
Department of Polymer Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 (P.R. China).
Chem Asian J. 2014 Dec;9(12):3472-81. doi: 10.1002/asia.201402746. Epub 2014 Sep 11.
The thiolate-catalyzed Tishchenko reaction has shown high chemoselectivity for the formation of double aromatic-substituted esters. In the present study, the detailed reaction mechanism and, in particular, the origin of the observed high chemoselectivity, have been studied with DFT calculations. The catalytic cycle mainly consisted of three steps: 1,2-addition, hydride transfer, and acyl transfer steps. The calculation results reproduce the experimental observations that 4-chlorobenzaldehyde acts as the hydrogen donor (carbonyl part in the ester product), while 2-methoxybenzaldehyde acts as the hydrogen acceptor (alcohol part in the product). The two main factors are responsible for such chemoselectivity: 1) in the rate-determining hydride transfer step, the para-chloride substituent facilitates the hydride-donating process by weakening the steric hindrance, and 2) the ortho-methoxy substituent facilitates the hydride-accepting process by stabilizing the magnesium center (by compensating for the electron deficiency).
硫醇盐催化的蒂申科反应对双芳基取代酯的形成表现出高化学选择性。在本研究中,已通过密度泛函理论(DFT)计算研究了详细的反应机理,特别是所观察到的高化学选择性的来源。催化循环主要由三个步骤组成:1,2-加成、氢化物转移和酰基转移步骤。计算结果重现了实验观察结果,即4-氯苯甲醛作为氢供体(酯产物中的羰基部分),而2-甲氧基苯甲醛作为氢受体(产物中的醇部分)。造成这种化学选择性的两个主要因素是:1)在速率决定步骤氢化物转移中,对氯取代基通过减弱空间位阻促进氢化物供体过程;2)邻甲氧基取代基通过稳定镁中心(通过补偿电子不足)促进氢化物受体过程。