Langdon Steven M, Legault Claude Y, Gravel Michel
†Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
‡Département de Chimie, Université de Sherbrooke, 2500 Boulevard Université, Sherbrooke, Quebec J1K 2R1, Canada.
J Org Chem. 2015 Apr 3;80(7):3597-610. doi: 10.1021/acs.joc.5b00301. Epub 2015 Mar 18.
An exploration into the origin of chemoselectivity in the NHC-catalyzed cross-benzoin reaction reveals several key factors governing the preferred pathway. In the first computational study to explore the cross-benzoin reaction, a piperidinone-derived triazolium catalyst produces kinetically controlled chemoselectivity. This is supported by (1)H NMR studies as well as a series of crossover experiments. Major contributors include the rapid and preferential formation of an NHC adduct with alkyl aldehydes, a rate-limiting carbon-carbon bond formation step benefiting from a stabilizing π-stacking/π-cation interaction, and steric penalties paid by competing pathways. The energy profile for the analogous pyrrolidinone-derived catalyst was found to be remarkably similar, despite experimental data showing that it is less chemoselective. The chemoselectivity could not be improved through kinetic control; however, equilibrating conditions show substantial preference for the same cross-benzoin product kinetically favored by the piperidinone-derived catalyst.
对氮杂环卡宾(NHC)催化的交叉安息香反应中化学选择性起源的探索揭示了几个控制优先反应途径的关键因素。在首个探索交叉安息香反应的计算研究中,一种哌啶酮衍生的三唑鎓催化剂产生了动力学控制的化学选择性。这得到了¹H NMR研究以及一系列交叉实验的支持。主要因素包括与烷基醛快速且优先形成NHC加合物、受益于稳定的π-堆积/π-阳离子相互作用的限速碳-碳键形成步骤,以及竞争途径所付出的空间位阻代价。尽管实验数据表明类似的吡咯烷酮衍生催化剂的化学选择性较低,但发现其能量曲线非常相似。通过动力学控制无法提高化学选择性;然而,平衡条件显示出对哌啶酮衍生催化剂动力学上有利的相同交叉安息香产物有显著偏好。