Caputo Jean-Guy, Dutykh Denys
Laboratoire de Mathématiques, INSA de Rouen, 76801 Saint-Etienne du Rouvray, France.
LAMA, UMR 5127 CNRS, Université de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac Cedex, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):022912. doi: 10.1103/PhysRevE.90.022912. Epub 2014 Aug 25.
To study how nonlinear waves propagate across Y- and T-type junctions, we consider the two-dimensional (2D) sine-Gordon equation as a model and examine the crossing of kinks and breathers. Comparing energies for different geometries reveals that, for small widths, the angle of the fork plays no role. Motivated by this, we introduce a one-dimensional effective model whose solutions agree well with the 2D simulations for kink and breather solutions. These exhibit two different behaviors: a kink crosses if it has sufficient energy; conversely a breather crosses when v>1-ω, where v and ω are, respectively, its velocity and frequency. This methodology can be generalized to more complex nonlinear wave models.
为了研究非线性波如何在Y型和T型结中传播,我们将二维(2D)正弦-戈登方程作为模型,并研究扭结波和呼吸子波的交叉情况。通过比较不同几何形状的能量发现,对于小宽度而言,分支角度不起作用。受此启发,我们引入了一个一维有效模型,其解与扭结波和呼吸子波解的二维模拟结果吻合良好。这些解表现出两种不同的行为:如果扭结波具有足够的能量,它就会穿过;相反,当v>1-ω时呼吸子波会穿过,其中v和ω分别是其速度和频率。这种方法可以推广到更复杂的非线性波模型。