Comte J C, Marquié P, Remoissenet M
Laboratoire d'Electronique, Informatique et Image (LE21) Université de Bourgogne, Aile des Sciences de l'Ingénieur, BP 47870, 21078 Dijon Cedex, France.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Dec;60(6 Pt B):7484-9. doi: 10.1103/physreve.60.7484.
We introduce a nonlinear Klein-Gordon lattice model with specific double-well on-site potential, additional constant external force and dissipation terms, which admits exact discrete kink or traveling wave fronts solutions. In the non-dissipative or conservative regime, our numerical simulations show that narrow kinks can propagate freely, and reveal that static or moving discrete breathers, with a finite but long lifetime, can emerge from kink-antikink collisions. In the general dissipative regime, the lifetime of these breathers depends on the importance of the dissipative effects. In the overdamped or diffusive regime, the general equation of motion reduces to a discrete reaction diffusion equation; our simulations show that, for a given potential shape, discrete wave fronts can travel without experiencing any propagation failure but their collisions are inelastic.
我们引入了一个具有特定双阱在位势、附加恒定外力和耗散项的非线性克莱因 - 戈登晶格模型,该模型允许精确的离散扭结或行波前解。在无耗散或保守 regime 中,我们的数值模拟表明窄扭结可以自由传播,并揭示出具有有限但较长寿命的静态或移动离散呼吸子可以从扭结 - 反扭结碰撞中出现。在一般耗散 regime 中,这些呼吸子的寿命取决于耗散效应的重要性。在过阻尼或扩散 regime 中,一般运动方程简化为离散反应扩散方程;我们的模拟表明,对于给定的势形状,离散波前可以传播而不会经历任何传播失败,但它们的碰撞是非弹性的。