Department of Materials Science &Engineering, Stanford University, Stanford, California 94305, USA.
Sandia National Laboratories, Livermore, California 94551, USA.
Nat Mater. 2014 Dec;13(12):1149-56. doi: 10.1038/nmat4084. Epub 2014 Sep 14.
Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.
许多电池电极都包含纳米颗粒的集合体,这些纳米颗粒在(脱)嵌入时会发生相分离。在这种电极中,直接参与嵌入的颗粒的分数会极大地影响循环寿命:颗粒数量的减少会使电流集中在少数颗粒上,从而导致电流热点。关于相分离电极磷酸铁锂(LiFePO4;LFP)中活性颗粒的报道差异很大,从接近 0%(逐个颗粒)到 100%(同时嵌入)不等。我们使用基于同步加速器的 X 射线显微镜探测了超过 3000 个 LFP 颗粒的单个充电状态。我们观察到,活性颗粒群强烈依赖于循环电流,在低电流速率下表现出类似逐个颗粒的行为,而在高电流速率下表现出越来越同步的行为,这与我们的相场多孔电极模拟结果一致。与直觉相反,电流密度或每单位活性内表面积的电流几乎不随全局电极循环速率而变化。相反,电极通过增加活性颗粒群来适应更高的电流。这种行为是由 LFP 中的热力学转化障碍引起的,这种现象可能会扩展到其他相分离电池材料。我们提出,通过改变转化障碍和交换电流密度,可以增加活性颗粒群,从而提高电流均匀性。这可能会为提高相分离电池电极的循环寿命带来新的范式。