Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.
Science. 2014 Jun 27;344(6191):1252817. doi: 10.1126/science.1252817.
The absence of a phase transformation involving substantial structural rearrangements and large volume changes is generally considered to be a key characteristic underpinning the high-rate capability of any battery electrode material. In apparent contradiction, nanoparticulate LiFePO4, a commercially important cathode material, displays exceptionally high rates, whereas its lithium-composition phase diagram indicates that it should react via a kinetically limited, two-phase nucleation and growth process. Knowledge concerning the equilibrium phases is therefore insufficient, and direct investigation of the dynamic process is required. Using time-resolved in situ x-ray powder diffraction, we reveal the existence of a continuous metastable solid solution phase during rapid lithium extraction and insertion. This nonequilibrium facile phase transformation route provides a mechanism for realizing high-rate capability of electrode materials that operate via two-phase reactions.
一般来说,不存在涉及大量结构重排和体积变化的相变被认为是任何电池电极材料高倍率性能的关键特征。显然与之矛盾的是,纳米颗粒 LiFePO4 是一种商业上重要的正极材料,却表现出异常高的倍率性能,而其锂组成相图表明它应该通过动力学受限的两相形核和生长过程进行反应。因此,有关平衡相的知识是不够的,需要直接研究动态过程。我们使用时间分辨原位 X 射线粉末衍射,揭示了在快速锂提取和插入过程中连续亚稳固溶相的存在。这种非平衡易相变途径为通过两相反应工作的电极材料实现高倍率性能提供了一种机制。