Suppr超能文献

由 Pickering 磁响应纤维素纳米晶自组装得到的微球和中空微胶囊。

Microbeads and hollow microcapsules obtained by self-assembly of pickering magneto-responsive cellulose nanocrystals.

机构信息

Department of Forest Biomaterials and ‡Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States.

出版信息

ACS Appl Mater Interfaces. 2014 Oct 8;6(19):16851-8. doi: 10.1021/am504260u. Epub 2014 Sep 26.

Abstract

Cellulose microbeads can be used as immobilization supports. We report on the design and preparation of magneto-responsive cellulose microbeads and microcapsules by self-assembled shells of cellulose nanocrystals (CNC) carrying magnetic CoFe2O4 nanoparticles, that is, a mixture of isotropic and anisotropic nanomaterials. The magnetic CNCs formed a structured layer, a mesh, consisting of CNCs and magnetic particles bound together on the surface of distinct droplets of hexadecane and styrene dispersed in water. Because of the presence of CNCs the highly crystalline mesh was targeted to provide an improved barrier property of the microbead shell compared to neat polymer shells, while the magnetic particles provided the magnetic response. In situ polymerization of the styrene phase led to the formation of solid microbeads (∼8 μm diameter) consisting of polystyrene (PS) cores encapsulated in the magnetic CNC shells (shell-to-core mass ratio of 4:96). The obtained solid microbeads were ferromagnetic (saturation magnetization of ∼60 emu per gram of the magnetic phase). The magnetic functionality enables easy separation of substances immobilized on the beads. Such a functionality was tested in removal of a dye from water. The microbeads were further utilized to synthesize hollow microcapsules by solubilization of the PS core. The CNC-based, magneto-responsive solid microbeads and hollow microcapsules were characterized by electron microscopy (morphology), X-ray diffraction (phase composition), and magnetometry (magnetic properties). Such hybrid systems can be used in the design of materials and devices for application in colloidal stabilization, concentration, separation, and delivery, among others.

摘要

纤维素微球可用作固定化载体。我们报告了通过纤维素纳米晶体(CNC)的自组装壳来设计和制备对磁响应的纤维素微球和微胶囊,其中包含磁性 CoFe2O4 纳米颗粒,即各向同性和各向异性纳米材料的混合物。磁性 CNC 形成了结构化层,即网格,由结合在一起的 CNC 和磁性颗粒组成,位于十六烷和苯乙烯的明显液滴的表面,这些液滴分散在水中。由于存在 CNC,高度结晶的网格旨在提供比纯聚合物壳更好的微球壳的阻隔性能,而磁性颗粒提供了磁响应。苯乙烯相的原位聚合导致形成了固体微球(直径约 8 μm),其由包裹在磁性 CNC 壳中的聚苯乙烯(PS)核组成(壳核质量比为 4:96)。所得到的固体微球是铁磁性的(每个磁性相的饱和磁化强度约为 60 emu/g)。磁性功能使固定在珠子上的物质的分离变得容易。这种功能在从水中去除染料的实验中得到了测试。微球进一步被用于通过溶解 PS 核来合成空心微胶囊。基于 CNC 的对磁响应的固体微球和空心微胶囊通过电子显微镜(形态)、X 射线衍射(相组成)和磁强计(磁性能)进行了表征。这种混合系统可用于设计胶体稳定、浓缩、分离和输送等应用的材料和装置。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验