Lantis A C, Ames M K, Atkins C E, DeFrancesco T C, Keene B W, Werre S R
Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
J Vet Pharmacol Ther. 2015 Feb;38(1):65-73. doi: 10.1111/jvp.12154. Epub 2014 Sep 16.
Pilot studies in our laboratory revealed that furosemide-induced renin-angiotensin-aldosterone system (RAAS) activation was not attenuated by the subsequent co-administration of benazepril. This study was designed to evaluate the effect of benazepril on angiotensin-converting enzyme (ACE) activity and furosemide-induced circulating RAAS activation. Our hypothesis was that benazepril suppression of ACE activity would not suppress furosemide-induced circulating RAAS activation, indicated by urinary aldosterone concentration. Ten healthy hound dogs were used in this study. The effect of furosemide (2 mg/kg p.o., q12h; Group F; n = 5) and furosemide plus benazepril (1 mg/kg p.o., q24h; Group FB; n = 5) on circulating RAAS was determined by plasma ACE activity, 4-6 h posttreatment, and urinary aldosterone to creatinine ratio (UAldo:C) on days -1, -2, 1, 3, and 7. There was a significant increase in the average UAldo:C (μg/g) after the administration of furosemide (Group F baseline [average of days -1 and -2] UAldo:C = 0.41, SD 0.15; day 1 UAldo:C = 1.1, SD 0.56; day 3 UAldo:C = 0.85, SD 0.50; day 7 UAldo:C = 1.1, SD 0.80, P < 0.05). Benazepril suppressed ACE activity (U/L) in Group FB (Group FB baseline ACE = 16.4, SD 4.2; day 1 ACE = 3.5, SD 1.4; day 3 ACE = 1.6, SD 1.3; day 7 ACE = 1.4, SD 1.4, P < 0.05) but did not significantly reduce aldosterone excretion (Group FB baseline UAldo:C = 0.35, SD 0.16; day 1 UAldo:C = 0.79, SD 0.39; day 3 UAldo:C 0.92, SD 0.48, day 7 UAldo:C = 0.99, SD 0.48, P < 0.05). Benazepril decreased plasma ACE activity but did not prevent furosemide-induced RAAS activation, indicating aldosterone breakthrough (escape). This is particularly noteworthy in that breakthrough is observed at the time of initiation of RAAS suppression, as opposed to developing after months of therapy.
我们实验室的前期研究表明,呋塞米诱导的肾素 - 血管紧张素 - 醛固酮系统(RAAS)激活不会因随后联合使用贝那普利而减弱。本研究旨在评估贝那普利对血管紧张素转换酶(ACE)活性以及呋塞米诱导的循环RAAS激活的影响。我们的假设是,贝那普利对ACE活性的抑制不会抑制呋塞米诱导的循环RAAS激活,这可通过尿醛固酮浓度来表明。本研究使用了10只健康的猎犬。在治疗后4 - 6小时,通过血浆ACE活性测定呋塞米(2mg/kg口服,每12小时一次;F组;n = 5)和呋塞米加贝那普利(1mg/kg口服,每24小时一次;FB组;n = 5)对循环RAAS的影响,并在第 - 1、 - 2、1、3和7天测定尿醛固酮与肌酐比值(UAldo:C)。给予呋塞米后,平均UAldo:C(μg/g)有显著增加(F组基线[第 - 1天和 - 2天的平均值]UAldo:C = 0.41,标准差0.15;第1天UAldo:C = 1.1,标准差0.56;第3天UAldo:C = 0.85,标准差0.50;第7天UAldo:C = 1.1,标准差0.80,P < 0.05)。贝那普利抑制了FB组的ACE活性(U/L)(FB组基线ACE = 16.4,标准差4.2;第1天ACE = 3.5,标准差1.4;第3天ACE = 1.6,标准差1.3;第7天ACE = 1.4,标准差1.4,P < 0.05),但未显著降低醛固酮排泄(FB组基线UAldo:C = 0.35,标准差0.16;第1天UAldo:C = 0.79,标准差0.39;第3天UAldo:C = 0.92,标准差0.48,第7天UAldo:C = 0.99,标准差0.48,P < 0.05)。贝那普利降低了血浆ACE活性,但未阻止呋塞米诱导的RAAS激活,表明存在醛固酮突破(逃逸)。这一点特别值得注意,因为突破是在开始抑制RAAS时就观察到,而不是在治疗数月后才出现。