Suppr超能文献

谢林模型的集合种群版本的精确解。

Exact solution for a metapopulation version of Schelling's model.

作者信息

Durrett Richard, Zhang Yuan

机构信息

Department of Mathematics, Duke University, Durham, NC 27708

Department of Mathematics, Duke University, Durham, NC 27708.

出版信息

Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14036-41. doi: 10.1073/pnas.1414915111. Epub 2014 Sep 15.

Abstract

In 1971, Schelling introduced a model in which families move if they have too many neighbors of the opposite type. In this paper, we will consider a metapopulation version of the model in which a city is divided into N neighborhoods, each of which has L houses. There are ρNL red families and ρNL blue families for some ρ < 1/2. Families are happy if there are ≤ ρ(c)L families of the opposite type in their neighborhood and unhappy otherwise. Each family moves to each vacant house at rates that depend on their happiness at their current location and that of their destination. Our main result is that if neighborhoods are large, then there are critical values ρ(b) < ρ(d) < ρ(c), so that for ρ < ρ(b), the two types are distributed randomly in equilibrium. When ρ > ρ(b), a new segregated equilibrium appears; for ρ(b) < ρ < ρ(d), there is bistability, but when ρ increases past ρ(d) the random state is no longer stable. When ρ(c) is small enough, the random state will again be the stationary distribution when ρ is close to 1/2. If so, this is preceded by a region of bistability.

摘要

1971年,谢林提出了一个模型,在该模型中,如果家庭有太多不同类型的邻居,他们就会搬家。在本文中,我们将考虑该模型的一个集合种群版本,其中一个城市被划分为N个社区,每个社区有L所房屋。对于某个ρ<1/2,有ρNL个红色家庭和ρNL个蓝色家庭。如果一个社区中不同类型的家庭数量≤ρ(c)L,家庭就会感到满意,否则就不满意。每个家庭以取决于其当前位置和目的地的幸福程度的速率搬到每个空房子里。我们的主要结果是,如果社区规模较大,那么存在临界值ρ(b)<ρ(d)<ρ(c),使得对于ρ<ρ(b),两种类型在平衡状态下随机分布。当ρ>ρ(b)时,会出现一种新的隔离平衡;对于ρ(b)<ρ<ρ(d),存在双稳态,但当ρ增加超过ρ(d)时,随机状态不再稳定。当ρ(c)足够小时,当ρ接近1/2时,随机状态将再次成为平稳分布。如果是这样,在此之前会有一个双稳态区域。

相似文献

1
Exact solution for a metapopulation version of Schelling's model.谢林模型的集合种群版本的精确解。
Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14036-41. doi: 10.1073/pnas.1414915111. Epub 2014 Sep 15.
2
A physical analogue of the Schelling model.谢林模型的物理模拟。
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19261-5. doi: 10.1073/pnas.0609371103. Epub 2006 Dec 6.
5
Dynamics and complexity of the Schelling segregation model.谢林隔离模型的动力学与复杂性
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056111. doi: 10.1103/PhysRevE.83.056111. Epub 2011 May 17.
6
Homophily, selection, and choice in segregation models.同群效应、选择与隔离模型中的选择。
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2313752121. doi: 10.1073/pnas.2313752121. Epub 2024 Feb 7.
7
Dynamics of Transformation from Segregation to Mixed Wealth Cities.从隔离城市到混合财富城市的转变动态
PLoS One. 2016 Nov 18;11(11):e0166960. doi: 10.1371/journal.pone.0166960. eCollection 2016.
9
Local approximation of a metapopulation's equilibrium.集合种群平衡的局部近似
J Math Biol. 2018 Sep;77(3):765-793. doi: 10.1007/s00285-018-1231-0. Epub 2018 Apr 18.
10
Emergence of segregation in evolving social networks.演化社交网络中的隔离现象的出现。
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8605-10. doi: 10.1073/pnas.1014486108. Epub 2011 May 5.

引用本文的文献

1
Ethnicity and wealth: The dynamics of dual segregation.族群与财富:双重隔离的动态。
PLoS One. 2018 Oct 10;13(10):e0204307. doi: 10.1371/journal.pone.0204307. eCollection 2018.

本文引用的文献

1
Dynamics and complexity of the Schelling segregation model.谢林隔离模型的动力学与复杂性
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 2):056111. doi: 10.1103/PhysRevE.83.056111. Epub 2011 May 17.
2
Competition between collective and individual dynamics.集体与个体动态的竞争。
Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20622-6. doi: 10.1073/pnas.0906263106. Epub 2009 Nov 23.
3
Understanding the social context of the Schelling segregation model.理解谢林隔离模型的社会背景。
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4109-14. doi: 10.1073/pnas.0708155105. Epub 2008 Mar 11.
4
A physical analogue of the Schelling model.谢林模型的物理模拟。
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19261-5. doi: 10.1073/pnas.0609371103. Epub 2006 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验