Field Katie J, Rimington William R, Bidartondo Martin I, Allinson Kate E, Beerling David J, Cameron Duncan D, Duckett Jeffrey G, Leake Jonathan R, Pressel Silvia
Department of Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, S10 2TN, UK.
New Phytol. 2015 Jan;205(2):743-56. doi: 10.1111/nph.13024. Epub 2014 Sep 17.
The discovery that Mucoromycotina, an ancient and partially saprotrophic fungal lineage, associates with the basal liverwort lineage Haplomitriopsida casts doubt on the widely held view that Glomeromycota formed the sole ancestral plant-fungus symbiosis. Whether this association is mutualistic, and how its functioning was affected by the fall in atmospheric CO2 concentration that followed plant terrestrialization in the Palaeozoic, remains unknown. We measured carbon-for-nutrient exchanges between Haplomitriopsida liverworts and Mucoromycotina fungi under simulated mid-Palaeozoic (1500 ppm) and near-contemporary (440 ppm) CO2 concentrations using isotope tracers, and analysed cytological differences in plant-fungal interactions. Concomitantly, we cultured both partners axenically, resynthesized the associations in vitro, and characterized their cytology. We demonstrate that liverwort-Mucoromycotina symbiosis is mutualistic and mycorrhiza-like, but differs from liverwort-Glomeromycota symbiosis in maintaining functional efficiency of carbon-for-nutrient exchange between partners across CO2 concentrations. Inoculation of axenic plants with Mucoromycotina caused major cytological changes affecting the anatomy of plant tissues, similar to that observed in wild-collected plants colonized by Mucoromycotina fungi. By demonstrating reciprocal exchange of carbon for nutrients between partners, our results provide support for Mucoromycotina establishing the earliest mutualistic symbiosis with land plants. As symbiotic functional efficiency was not compromised by reduced CO2 , we suggest that other factors led to the modern predominance of the Glomeromycota symbiosis.
毛霉亚门是一种古老且部分腐生的真菌谱系,它与基部苔类植物谱系单倍体苔目相关联,这一发现对广泛持有的球囊菌门形成了唯一的植物 - 真菌共生祖先的观点提出了质疑。这种关联是否是互利共生的,以及在古生代植物陆地化之后大气二氧化碳浓度下降对其功能有何影响,仍然未知。我们使用同位素示踪剂,在模拟的中古生代(1500 ppm)和近当代(440 ppm)二氧化碳浓度下,测量了单倍体苔目苔类植物与毛霉亚门真菌之间的碳 - 营养交换,并分析了植物 - 真菌相互作用中的细胞学差异。同时,我们对双方进行无菌培养,在体外重新合成这种关联,并对其细胞学特征进行了表征。我们证明苔类植物 - 毛霉亚门共生是互利共生且类似菌根的,但在跨二氧化碳浓度维持伙伴之间碳 - 营养交换的功能效率方面,与苔类植物 - 球囊菌门共生不同。用毛霉亚门接种无菌植物会引起主要的细胞学变化,影响植物组织的解剖结构,这与在被毛霉亚门真菌定殖的野生采集植物中观察到的情况类似。通过证明伙伴之间碳与营养物质的相互交换,我们的结果为毛霉亚门与陆地植物建立最早的互利共生关系提供了支持。由于共生功能效率并未因二氧化碳减少而受损,我们认为其他因素导致了球囊菌门共生在现代占主导地位。