Suppr超能文献

早期陆地植物进化中的主要转折:苔藓植物学视角。

Major transitions in the evolution of early land plants: a bryological perspective.

机构信息

Dipartimento di Scienze ambientali, Seconda Università di Napoli, via Vivaldi 43, Caserta, Italy.

出版信息

Ann Bot. 2012 Apr;109(5):851-71. doi: 10.1093/aob/mcs017. Epub 2012 Feb 22.

Abstract

Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.

摘要

背景 分子系统发生学已经确定,苔藓植物是陆地植物中最早分支的类群,角苔类植物与苔藓植物和维管植物的共同祖先最为接近,而另一种拓扑结构则将角苔类植物确定为与苔藓植物和维管植物的姐妹群。维管植物和假定缺乏木质部维管束组织的化石植物形成多孢子囊植物类群。 范围 本文综述了系统发生学、发育学、解剖学、遗传学和古生物学数据,旨在重建塑造主要陆地植物谱系的事件序列。 结论 陆地植物的基本特征主要在苔藓植物中进化,因此,更好地理解陆地植物早期进化的关键在于苔藓植物。陆地植物的最后共同祖先可能是一种无叶的轴生配子体,具有简单的单孢子囊孢子体。如果存在输水组织,它也仅限于配子体,并且可能由类似于早期分化的苔藓植物 Haplomitrium 和 Takakia 中的穿孔细胞组成。气孔是孢子体的创新,可能具有从亲代配子体中产生蒸腾驱动的水流和溶质流以及促进孢子释放前分离的原始功能。苔藓植物、角苔类植物和多孢子囊植物中的气孔被认为是同源的,因此这三个谱系统称为“气孔植物”。从顶端分生组织发育而来的不定孢子体(孢子体芽)是多孢子囊植物的关键创新。不定水合作用是陆地植物的原始条件;同型水合作用是在多孢子囊植物的孢子体中进化而来的。现代丛枝菌根真菌共生体的祖先在主要现存谱系分离之前,就已经在配子体世代中进化出来了。水螅是特定于高级苔藓植物的无孔输水细胞。多孢子囊植物的木质部维管束细胞要么来自穿孔细胞,要么从头开始形成。食物输送细胞是陆地植物进化中的早期创新。本文提出的推论有待分子遗传学的验证。

相似文献

1
Major transitions in the evolution of early land plants: a bryological perspective.
Ann Bot. 2012 Apr;109(5):851-71. doi: 10.1093/aob/mcs017. Epub 2012 Feb 22.
2
The origin of the sporophyte shoot in land plants: a bryological perspective.
Ann Bot. 2012 Oct;110(5):935-41. doi: 10.1093/aob/mcs176. Epub 2012 Aug 7.
3
Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny.
Philos Trans R Soc Lond B Biol Sci. 2000 Jun 29;355(1398):769-93. doi: 10.1098/rstb.2000.0615.
4
The hornworts: morphology, evolution and development.
New Phytol. 2021 Jan;229(2):735-754. doi: 10.1111/nph.16874. Epub 2020 Sep 15.
6
Bryophyte diversity and evolution: windows into the early evolution of land plants.
Am J Bot. 2011 Mar;98(3):352-69. doi: 10.3732/ajb.1000316. Epub 2011 Feb 25.
7
The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte.
Curr Biol. 2018 Mar 5;28(5):733-745.e2. doi: 10.1016/j.cub.2018.01.063. Epub 2018 Feb 15.
8
Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts.
Nat Plants. 2020 Mar;6(3):259-272. doi: 10.1038/s41477-020-0618-2. Epub 2020 Mar 13.
9
The origin and evolution of stomata.
Curr Biol. 2022 Jun 6;32(11):R539-R553. doi: 10.1016/j.cub.2022.04.040.

引用本文的文献

1
Genetic analysis of the single internode dwarf 1 mutant in barley.
BMC Plant Biol. 2025 Jul 2;25(1):797. doi: 10.1186/s12870-025-06790-6.
2
Tissue-Specific Differential Distribution of Cell Wall Epitopes in and .
Int J Mol Sci. 2025 Apr 11;26(8):3602. doi: 10.3390/ijms26083602.
3
In situ cavitation bubble manometry reveals a lack of light-activated guard cell turgor modulation in bryophytes.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2419887122. doi: 10.1073/pnas.2419887122. Epub 2025 Mar 26.
5
Geographic patterns and climatic drivers of the mean genus age of liverworts in North America.
Plant Divers. 2024 Jul 10;46(6):723-731. doi: 10.1016/j.pld.2024.07.002. eCollection 2024 Nov.
6
Chromosome-level Genome Assembly and Annotation of the Arctic Moss Ptychostomum knowltonii.
Genome Biol Evol. 2025 Jan 6;17(1). doi: 10.1093/gbe/evae268.
7
MpMLO1 controls sperm discharge in liverwort.
Nat Plants. 2024 Jun;10(6):1027-1038. doi: 10.1038/s41477-024-01703-1. Epub 2024 Jun 3.
8
Callose in leptoid cell walls of the moss and the evolution of callose synthase across bryophytes.
Front Plant Sci. 2024 Feb 7;15:1357324. doi: 10.3389/fpls.2024.1357324. eCollection 2024.
10
What can hornworts teach us?
Front Plant Sci. 2023 Mar 8;14:1108027. doi: 10.3389/fpls.2023.1108027. eCollection 2023.

本文引用的文献

1
TRANSITION TO A LAND FLORA: PHYLOGENETIC RELATIONSHIPS OF THE GREEN ALGAE AND BRYOPHYTES.
Cladistics. 1985 Sep;1(4):305-328. doi: 10.1111/j.1096-0031.1985.tb00431.x.
2
Cells and tissues in the vegetative sporophytes of early land plants.
New Phytol. 1993 Oct;125(2):225-247. doi: 10.1111/j.1469-8137.1993.tb03879.x.
3
Poikilohydry and homoihydry: antithesis or spectrum of possibilities?
New Phytol. 2002 Dec;156(3):327-349. doi: 10.1046/j.1469-8137.2002.00526.x.
6
Selection pressures on stomatal evolution.
New Phytol. 2002 Mar;153(3):371-386. doi: 10.1046/j.0028-646X.2001.00334.x. Epub 2002 Mar 5.
7
Development of water-conducting cells in the antipodal liverwort Symphyogyna brasiliensis (Metzgeriales).
New Phytol. 1996 Apr;132(4):603-615. doi: 10.1111/j.1469-8137.1996.tb01879.x.
9
Structure-function relationships of the plant cuticle and cuticular waxes - a smart material?
Funct Plant Biol. 2006 Oct;33(10):893-910. doi: 10.1071/FP06139.
10
Plasmodesmata and pit development in secondary xylem elements.
Planta. 1982 Aug;155(3):251-60. doi: 10.1007/BF00392724.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验