School of Chemistry and ‡Cardiff Catalysis Institute, School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom.
J Am Chem Soc. 2014 Oct 15;136(41):14505-12. doi: 10.1021/ja5066366. Epub 2014 Oct 2.
Germacrene A synthase (GAS) from Solidago canadensis catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and <2% α-humulene, which arises from 1,11-cyclization of FDP. The origin of the 1,11-activity of GAS was investigated by amino acid sequence alignments of 1,10- and 1,11-synthases and comparisons of X-ray crystal structures with the homology model of GAS; a triad [Thr 401-Gly 402-Gly 403] that might be responsible for the predominant 1,10-cyclization activity of GAS was identified. Replacement of Gly 402 with residues of increasing size led to a progressive increase of 1,11-cyclization. The catalytic robustness of these 1,10- /1,11-GAS variants point to Gly 402 as a functional switch of evolutionary significance and suggests that enzymes with strict functionalities have evolved from less specific ancestors through a small number of substitutions. Similar results were obtained with germacrene D synthase (GDS) upon replacement of the homologous active-site residue Gly 404: GDS-G404V generated approximately 20% bicyclogermacrene, a hydrocarbon with a cyclopropane ring that underlines the dual 1,10-/1,11-cyclization activity of this mutant. This suggests that the reaction pathways to germacrenes and humulenes might be connected through a bridged 1,10,11-carbocation intermediate or transition state that resembles bicyclogermacrene. Mechanistic studies using [1-(3)H1]-10-fluorofarnesyl diphosphate and deuterium-labeling experiments with [12,13-(2)H6]-FDP support a germacrene-humulene rearrangement linking 1,10- and 1,11-pathways. These results support the bioinformatics proposal that modern 1,10-synthases could have evolved from promiscuous 1,11-sesquiterpene synthases.
加拿大一枝黄花中的倍半萜合酶(GAS)能够催化法呢基二磷酸(FDP)转化为植物倍半萜(+)-大根香叶烯 A。二磷酸基团排出后,法呢基阳离子与远端的 10,11-双键反应,生成大根香叶烯 A(>96%)和 <2%的 α-葎草烯,这是 FDP 1,11-环化的产物。通过 1,10- 和 1,11-合酶的氨基酸序列比对以及与 GAS 同源模型的 X 射线晶体结构比较,研究了 GAS 的 1,11-活性的起源;鉴定了一个三联体 [Thr 401-Gly 402-Gly 403],它可能负责 GAS 的主要 1,10-环化活性。用较大尺寸的残基替换 Gly 402 导致 1,11-环化逐渐增加。这些 1,10-/1,11-GAS 变体的催化稳健性表明 Gly 402 是一个具有进化意义的功能开关,并表明具有严格功能的酶是通过少数取代从不太特异的祖先进化而来的。用同源活性位点残基 Gly 404 替换大根香叶烯 D 合酶(GDS)也得到了类似的结果:GDS-G404V 产生了大约 20%的双环大根香叶烯,这是一种具有环丙烷环的碳氢化合物,强调了该突变体的双重 1,10-/1,11-环化活性。这表明,大根香叶烯和葎草烯的反应途径可能通过一个桥连的 1,10,11-碳正离子中间体或类似双环大根香叶烯的过渡态相连。使用 [1-(3)H1]-10-氟法呢基二磷酸的机制研究和 [12,13-(2)H6]-FDP 的氘标记实验支持了连接 1,10- 和 1,11-途径的大根香叶烯-葎草烯重排。这些结果支持了生物信息学的提议,即现代的 1,10-合酶可能是从混杂的 1,11-倍半萜合酶进化而来的。