School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom.
J Am Chem Soc. 2012 Apr 4;134(13):5900-8. doi: 10.1021/ja211820p. Epub 2012 Mar 19.
Recombinant (+)-δ-cadinene synthase (DCS) from Gossypium arboreum catalyzes the metal-dependent cyclization of (E,E)-farnesyl diphosphate (FDP) to the cadinane sesquiterpene δ-cadinene, the parent hydrocarbon of cotton phytoalexins such as gossypol. In contrast to some other sesquiterpene cyclases, DCS carries out this transformation with >98% fidelity but, as a consequence, leaves no mechanistic traces of its mode of action. The formation of (+)-δ-cadinene has been shown to occur via the enzyme-bound intermediate (3R)-nerolidyl diphosphate (NDP), which in turn has been postulated to be converted to cis-germacradienyl cation after a 1,10-cyclization. A subsequent 1,3-hydride shift would then relocate the carbocation within the transient macrocycle to expedite a second cyclization that yields the cadinenyl cation with the correct cis stereochemistry found in (+)-δ-cadinene. An elegant 1,10-mechanistic pathway that avoids the formation of (3R)-NDP has also been suggested. In this alternative scenario, the final cadinenyl cation is proposed to be formed through the intermediacy of trans, trans-germacradienyl cation and germacrene D. In addition, an alternative 1,6-ring closure mechanism via the bisabolyl cation has previously been envisioned. We report here a detailed investigation of the catalytic mechanism of DCS using a variety of mechanistic probes including, among others, deuterated and fluorinated FDPs. Farnesyl diphosphate analogues with fluorine at C2 and C10 acted as inhibitors of DCS, but intriguingly, after prolonged overnight incubations, they yielded 2F-germacrene(s) and a 10F-humulene, respectively. The observed 1,10-, and to a lesser extent, 1,11-cyclization activity of DCS with these fluorinated substrates is consistent with the postulated macrocyclization mechanism(s) en route to (+)-δ-cadinene. On the other hand, mechanistic results from incubations of DCS with 6F-FPP, (2Z,6E)-FDP, neryl diphosphate, 6,7-dihydro-FDP, and NDP seem to be in better agreement with the potential involvement of the alternative biosynthetic 1,6-ring closure pathway. In particular, the strong inhibition of DCS by 6F-FDP, coupled to the exclusive bisabolyl- and terpinyl-derived product profiles observed for the DCS-catalyzed turnover of (2Z,6E)-farnesyl and neryl diphosphates, suggested the intermediacy of α-bisabolyl cation. DCS incubations with enantiomerically pure 1-(2)H(1)-FDP revealed that the putative bisabolyl-derived 1,6-pathway proceeds through (3R)-nerolidyl diphosphate (NDP), is consistent with previous deuterium-labeling studies, and accounts for the cis stereochemistry characteristic of cadinenyl-derived sesquiterpenes. While the results reported here do not unambiguously rule in favor of 1,6- or 1,10-cyclization, they demonstrate the mechanistic versatility inherent to DCS and highlight the possible existence of multiple mechanistic pathways.
重组(+)-δ-杜松烯合酶(DCS)来源于棉属植物,能够催化(E,E)-法呢基二磷酸(FDP)的金属依赖性环化,生成杜松烷倍半萜烯δ-杜松烯,这是棉植物抗毒素如棉酚的母体碳氢化合物。与其他一些倍半萜烯环化酶不同,DCS 以>98%的保真度进行这种转化,但因此,其作用模式没有留下任何机械痕迹。已经表明(+)-δ-杜松烯的形成是通过酶结合的中间体(3R)-香叶基二磷酸(NDP)发生的,反过来,据推测,NDP 在 1,10-环化后转化为顺式- 格尔马迪烯阳离子。随后的 1,3-氢转移将在瞬态大环内重新定位碳正离子,以加速生成具有(+)-δ-杜松烯中发现的正确顺式立体化学的杜烯正离子的第二次环化。也提出了一种优雅的 1,10-机制途径,可以避免(3R)-NDP 的形成。在这种替代方案中,最终的杜烯正离子被提议通过反式,反式-格尔马迪烯阳离子和格尔马烯 D 的中间体形成。此外,以前还设想了通过双醇正离子的替代 1,6-环闭机制。我们在这里使用各种机制探针,包括但不限于氘化和氟化的 FDP,对 DCS 的催化机制进行了详细研究。在 C2 和 C10 处具有氟的法呢基二磷酸类似物作为 DCS 的抑制剂,但有趣的是,经过长时间的过夜孵育,它们分别生成 2F-格尔马烯和 10F-葎草烯。用这些氟化的底物观察到的 DCS 的 1,10-,并且在较小程度上,1,11-环化活性与(+)-δ-杜松烯的假定大环化机制一致。另一方面,来自 DCS 与 6F-FPP、(2Z,6E)-FDP、香叶基二磷酸、6,7-二氢-FDP 和 NDP 孵育的机制结果似乎与替代生物合成 1,6-环闭途径的潜在参与更为一致。特别是,6F-FDP 对 DCS 的强烈抑制作用,以及观察到的 DCS 催化(2Z,6E)法呢基和香叶基二磷酸转化的唯一的双醇基和萜烯基衍生产物谱,表明α-双醇正离子的中间产物。用对映体纯的[1-(2)H(1)](1R)-FDP 孵育 DCS 表明,假定的双醇衍生的 1,6-途径通过(3R)-香叶基二磷酸(NDP)进行,与先前的氘标记研究一致,并解释了 cadinenyl 衍生的倍半萜烯的顺式立体化学特征。虽然这里报道的结果不能明确支持 1,6-或 1,10-环化,但它们证明了 DCS 固有的机制多功能性,并强调了可能存在多种机制途径。