Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, The University of Manchester , Manchester, M13 9PL, United Kingdom.
Environ Sci Technol. 2014 Nov 18;48(22):13549-56. doi: 10.1021/es5017125. Epub 2014 Nov 7.
Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10-10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.
尽管人们普遍认为微生物在中性条件下显著影响地下水中铀的形态和迁移,但在与水泥基中放废物地质处置相关的碱性条件下,微生物介导的 U(VI) 氧化还原循环仍未得到探索。在这里,我们描述了使用来自石灰生产遗址的沉积物进行的微宇宙实验,这些沉积物在添加电子供体的条件下,在 pH 值为 10-10.5 的条件下,研究了 U(VI) 的生物地球化学命运,同时还添加了作为水铁矿的 Fe(III)。在没有添加 Fe(III)的系统中,部分 U(VI)发生还原,形成含有 U(IV)的非铀矿相,在空气 (O2) 的存在下发生再氧化,在一定程度上也发生硝酸盐再氧化。相比之下,在添加 Fe(III)的情况下,U(VI)首先通过吸附到 Fe(III)矿物上来从溶液中去除,然后进行生物还原和 (生物)磁铁矿形成,同时形成一种复杂的含有 U(IV)的相,其中存在铀矿相,它也会发生空气 (O2) 和部分硝酸盐的再氧化。16S rRNA 基因焦磷酸测序表明,与厚壁菌门和拟杆菌门相关的革兰氏阳性菌在还原后沉积物中占主导地位。这些数据首次提供了高 pH 值下铀生物地球化学的见解,对工程屏障系统和碱性、化学干扰的地球层中铀在地质处置中的长期命运具有重要意义。