Suppr超能文献

盐胁迫下极端盐生植物小盐芥叶绿体中替代电子受体和抗氧化防御的变化

Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella parvula) under salinity.

作者信息

Uzilday Baris, Ozgur Rengin, Sekmen A Hediye, Yildiztugay Evren, Turkan Ismail

机构信息

Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey.

Department of Biology, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey and Department of Biology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42250, Turkey

出版信息

Ann Bot. 2015 Feb;115(3):449-63. doi: 10.1093/aob/mcu184. Epub 2014 Sep 17.

Abstract

BACKGROUND AND AIMS

Eutrema parvulum (synonym, Thellungiella parvula) is an extreme halophyte that thrives in high salt concentrations (100-150 mm) and is closely related to Arabidopsis thaliana. The main aim of this study was to determine how E. parvulum uses reactive oxygen species (ROS) production, antioxidant systems and redox regulation of the electron transport system in chloroplasts to tolerate salinity.

METHODS

Plants of E. parvulum were grown for 30 d and then treated with either 50, 200 or 300 mm NaCl. Physiological parameters including growth and water relationships were measured. Activities of antioxidant enzymes were determined in whole leaves and chloroplasts. In addition, expressions of chloroplastic redox components such as ferrodoxin thioredoxin reductases (FTR), NADPH thioredoxin reductases (NTRC), thioredoxins (TRXs) and peroxiredoxins (PRXs), as well as genes encoding enzymes of the water-water cycle and proline biosynthesis were measured.

KEY RESULTS

Salt treatment affected water relationships negatively and the accumulation of proline was increased by salinity. E. parvulum was able to tolerate 300 mm NaCl over long periods, as evidenced by H2O2 content and lipid peroxidation. While Ca(2+) and K(+) concentrations were decreased by salinity, Na(+) and Cl(-) concentrations increased. Efficient induction of activities and expressions of water-water cycle enzymes might prevent accumulation of excess ROS in chloroplasts and therefore protect the photosynthetic machinery in E. parvulum. The redox homeostasis in chloroplasts might be achieved by efficient induction of expressions of redox regulatory enzymes such as FTR, NTRC, TRXs and PRXs under salinity.

CONCLUSIONS

E. parvulum was able to adapt to osmotic stress by an efficient osmotic adjustment mechanism involving proline and was able to regulate its ion homeostasis. In addition, efficient induction of water-water cycle enzymes and other redox regulatory components such as TRXs and PRXs in chloroplasts were able to protect the chloroplasts from salinity-induced oxidative stress.

摘要

背景与目的

小盐芥(同义词,盐芥)是一种极端盐生植物,能在高盐浓度(100 - 150 mM)环境中生长,且与拟南芥亲缘关系密切。本研究的主要目的是确定小盐芥如何利用活性氧(ROS)产生、抗氧化系统以及叶绿体中电子传递系统的氧化还原调节来耐受盐分。

方法

将小盐芥植株培养30天,然后用50、200或300 mM NaCl处理。测定包括生长和水分关系在内的生理参数。测定全叶和叶绿体中抗氧化酶的活性。此外,还测定了叶绿体氧化还原成分如铁氧还蛋白硫氧还蛋白还原酶(FTR)、NADPH硫氧还蛋白还原酶(NTRC)、硫氧还蛋白(TRXs)和过氧化物氧还蛋白(PRXs)的表达,以及编码水 - 水循环和脯氨酸生物合成酶的基因。

关键结果

盐处理对水分关系有负面影响,盐分增加了脯氨酸的积累。小盐芥能够长期耐受300 mM NaCl,这从过氧化氢含量和脂质过氧化得到证明。虽然盐分使钙(2 +)和钾(+)浓度降低,但钠(+)和氯( - )浓度增加。水 - 水循环酶活性和表达的有效诱导可能防止叶绿体中过量ROS的积累,从而保护小盐芥的光合机构。在盐分胁迫下,叶绿体中的氧化还原稳态可能通过有效诱导氧化还原调节酶如FTR、NTRC、TRXs和PRXs的表达来实现。

结论

小盐芥能够通过涉及脯氨酸的有效渗透调节机制适应渗透胁迫,并能够调节其离子稳态。此外,叶绿体中水 - 水循环酶和其他氧化还原调节成分如TRXs和PRXs的有效诱导能够保护叶绿体免受盐分诱导的氧化胁迫。

相似文献

4
Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress.
Plant Physiol Biochem. 2011 Aug;49(8):816-24. doi: 10.1016/j.plaphy.2011.01.021. Epub 2011 Jan 31.
6
NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus.
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):12069-12074. doi: 10.1073/pnas.1706003114. Epub 2017 Oct 24.
9
Differential Regulation of NAPDH Oxidases in Salt-Tolerant and Salt-Sensitive .
Int J Mol Sci. 2021 Sep 25;22(19):10341. doi: 10.3390/ijms221910341.

引用本文的文献

1
Adaptive Strategy of the Perennial Halophyte Grass to Long-Term Salinity Stress.
Plants (Basel). 2024 Dec 8;13(23):3445. doi: 10.3390/plants13233445.
3
Sensitivity and responses of chloroplasts to salt stress in plants.
Front Plant Sci. 2024 Apr 17;15:1374086. doi: 10.3389/fpls.2024.1374086. eCollection 2024.
5
Structure, development, and the salt response of salt bladders in L.
Front Plant Sci. 2022 Sep 8;13:989946. doi: 10.3389/fpls.2022.989946. eCollection 2022.
6
Effects of Salinity Stress on Chloroplast Structure and Function.
Cells. 2021 Aug 7;10(8):2023. doi: 10.3390/cells10082023.
7
Proteomics Revealed Distinct Responses to Salinity between the Halophytes (L.) Dumort and (Roxb).
Plants (Basel). 2020 Feb 10;9(2):227. doi: 10.3390/plants9020227.
8
Polyamines in Halophytes.
Front Plant Sci. 2019 Apr 9;10:439. doi: 10.3389/fpls.2019.00439. eCollection 2019.
9
Halophytism: What Have We Learnt From Relative Model Systems?
Plant Physiol. 2018 Nov;178(3):972-988. doi: 10.1104/pp.18.00863. Epub 2018 Sep 20.
10
Salt tolerance mechanisms in three Irano-Turanian Brassicaceae halophytes relatives of Arabidopsis thaliana.
J Plant Res. 2018 Nov;131(6):1029-1046. doi: 10.1007/s10265-018-1053-6. Epub 2018 Jul 2.

本文引用的文献

1
Understanding plant responses to drought - from genes to the whole plant.
Funct Plant Biol. 2003 Mar;30(3):239-264. doi: 10.1071/FP02076.
2
Reactive oxygen species regulation and antioxidant defence in halophytes.
Funct Plant Biol. 2013 Aug;40(9):832-847. doi: 10.1071/FP12389.
5
Comparative proteomic analysis of Puccinellia tenuiflora leaves under Na2CO3 stress.
Int J Mol Sci. 2013 Jan 15;14(1):1740-62. doi: 10.3390/ijms14011740.
8
Insights into salt tolerance from the genome of Thellungiella salsuginea.
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12219-24. doi: 10.1073/pnas.1209954109. Epub 2012 Jul 9.
9
Salinity-induced changes in protein expression in the halophytic plant Nitraria sphaerocarpa.
J Proteomics. 2012 Sep 18;75(17):5226-43. doi: 10.1016/j.jprot.2012.06.006. Epub 2012 Jun 20.
10
Proline metabolism and its implications for plant-environment interaction.
Arabidopsis Book. 2010;8:e0140. doi: 10.1199/tab.0140. Epub 2010 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验