Suppr超能文献

NTRC 依赖性 2-Cys 过氧化物酶的氧化还原平衡对于光合器官的最佳功能是必需的。

NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus.

机构信息

Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, 41092-Seville, Spain.

Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, 41092-Seville, Spain

出版信息

Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):12069-12074. doi: 10.1073/pnas.1706003114. Epub 2017 Oct 24.

Abstract

Thiol-dependent redox regulation allows the rapid adaptation of chloroplast function to unpredictable changes in light intensity. Traditionally, it has been considered that chloroplast redox regulation relies on photosynthetically reduced ferredoxin (Fd), thioredoxins (Trxs), and an Fd-dependent Trx reductase (FTR), the Fd-FTR-Trxs system, which links redox regulation to light. More recently, a plastid-localized NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC, was identified. NTRC efficiently reduces 2-Cys peroxiredoxins (Prxs), thus having antioxidant function, but also participates in redox regulation of metabolic pathways previously established to be regulated by Trxs. Thus, the NTRC, 2-Cys Prxs, and Fd-FTR-Trxs redox systems may act concertedly, but the nature of the relationship between them is unknown. Here we show that decreased levels of 2-Cys Prxs suppress the phenotype of the KO mutant. The excess of oxidized 2-Cys Prxs in NTRC-deficient plants drains reducing power from chloroplast Trxs, which results in low efficiency of light energy utilization and impaired redox regulation of Calvin-Benson cycle enzymes. Moreover, the dramatic phenotype of the triple mutant, lacking NTRC and -type Trxs, was also suppressed by decreased 2-Cys Prxs contents, as the mutant partially recovered the efficiency of light energy utilization and exhibited WT rate of CO fixation and growth phenotype. The suppressor phenotype was not caused by compensatory effects of additional chloroplast antioxidant systems. It is proposed that the Fd-FTR-Trx and NTRC redox systems are linked by the redox balance of 2-Cys Prxs, which is crucial for chloroplast function.

摘要

硫醇依赖的氧化还原调控允许叶绿体功能快速适应光强的不可预测变化。传统上,人们认为叶绿体氧化还原调控依赖于光合还原型铁氧还蛋白 (Fd)、硫氧还蛋白 (Trxs) 和 Fd 依赖性硫氧还蛋白还原酶 (FTR),即 Fd-FTR-Trxs 系统,该系统将氧化还原调控与光联系起来。最近,一种定位于质体的 NADPH 依赖性硫氧还蛋白还原酶 (NTR) 与联合的硫氧还蛋白结构域被鉴定出来,称为 NTRC。NTRC 有效地还原 2-Cys 过氧化物酶 (Prxs),因此具有抗氧化功能,但也参与以前被认为受 Trxs 调控的代谢途径的氧化还原调控。因此,NTRC、2-Cys Prxs 和 Fd-FTR-Trxs 氧化还原系统可能协同作用,但它们之间的关系性质尚不清楚。在这里,我们表明,2-Cys Prxs 水平的降低抑制了 KO 突变体的表型。NTRC 缺陷植物中 2-Cys Prxs 的氧化过量会从叶绿体硫氧还蛋白中消耗还原能力,导致光能利用效率低下和卡尔文-本森循环酶的氧化还原调节受损。此外,缺乏 NTRC 和 -型 Trxs 的三重突变体的明显表型也被 2-Cys Prxs 含量的降低所抑制,因为 突变体部分恢复了光能利用效率,并表现出 WT 的 CO 固定和生长表型。这种抑制表型不是由额外的叶绿体抗氧化系统的补偿效应引起的。据提议,Fd-FTR-Trx 和 NTRC 氧化还原系统通过 2-Cys Prxs 的氧化还原平衡连接,这对叶绿体功能至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb85/5692536/0ba9c6aa4dee/pnas.1706003114fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验