Cellular and Structural Physiology Institute and Nagoya University, Nagoya 464-8601, Japan; Graduate School of Pharmaceutical Science, Nagoya University, Nagoya 464-8601, Japan.
Cellular and Structural Physiology Institute and Nagoya University, Nagoya 464-8601, Japan.
J Biol Chem. 2014 Oct 31;289(44):30590-30601. doi: 10.1074/jbc.M114.584623. Epub 2014 Sep 17.
Gastric H(+),K(+)-ATPase, an ATP-driven proton pump responsible for gastric acidification, is a molecular target for anti-ulcer drugs. Here we show its cryo-electron microscopy (EM) structure in an E2P analog state, bound to magnesium fluoride (MgF), and its K(+)-competitive antagonist SCH28080, determined at 7 Å resolution by electron crystallography of two-dimensional crystals. Systematic comparison with other E2P-related cryo-EM structures revealed that the molecular conformation in the (SCH)E2·MgF state is remarkably distinguishable. Although the azimuthal position of the A domain of the (SCH)E2·MgF state is similar to that in the E2·AlF (aluminum fluoride) state, in which the transmembrane luminal gate is closed, the arrangement of transmembrane helices in the (SCH)E2·MgF state shows a luminal-open conformation imposed on by bound SCH28080 at its luminal cavity, based on observations of the structure in the SCH28080-bound E2·BeF (beryllium fluoride) state. The molecular conformation of the (SCH)E2·MgF state thus represents a mixed overall structure in which its cytoplasmic and luminal half appear to be independently modulated by a phosphate analog and an antagonist bound to the respective parts of the enzyme. Comparison of the molecular conformations revealed that the linker region connecting the A domain and the transmembrane helix 2 (A-M2 linker) mediates the regulation of luminal gating. The mechanistic rationale underlying luminal gating observed in H(+),K(+)-ATPase is consistent with that observed in sarcoplasmic reticulum Ca(2+)-ATPase and other P-type ATPases and is most likely conserved for the P-type ATPase family in general.
胃 H(+)、K(+)-ATP 酶是一种负责胃酸酸化的 ATP 驱动质子泵,是抗溃疡药物的分子靶标。在这里,我们通过二维晶体的电子晶体学,以 7Å 的分辨率确定了其在 E2P 类似物状态下与氟化镁(MgF)结合的冷冻电镜(EM)结构,以及其与 K(+)竞争性拮抗剂 SCH28080 的结合情况。通过与其他 E2P 相关冷冻电镜结构的系统比较,我们发现(SCH)E2·MgF 状态下的分子构象具有显著的可区分性。尽管(SCH)E2·MgF 状态下 A 结构域的方位与 E2·AlF(氟化铝)状态下的方位相似,在后者中,跨膜腔门是关闭的,但在(SCH)E2·MgF 状态下,跨膜螺旋的排列显示出一种由结合于腔内部的 SCH28080 施加的腔开构象,这是基于对 SCH28080 结合的 E2·BeF(铍氟化物)状态下结构的观察得出的。因此,(SCH)E2·MgF 状态下的分子构象代表了一种混合的整体结构,其中其细胞质和腔部分的构象似乎分别由磷酸盐类似物和结合于酶的相应部分的拮抗剂独立调节。分子构象的比较表明,连接 A 结构域和跨膜螺旋 2 的连接区(A-M2 连接区)介导了腔门的调节。在 H(+)、K(+)-ATP 酶中观察到的腔门调节的机制原理与在肌浆网 Ca(2+)-ATP 酶和其他 P 型 ATP 酶中观察到的原理一致,并且很可能在一般的 P 型 ATP 酶家族中是保守的。