Suppr超能文献

早期多细胞生物的几何形状演变

Geometry shapes evolution of early multicellularity.

作者信息

Libby Eric, Ratcliff William, Travisano Michael, Kerr Ben

机构信息

Santa Fe Institute, Santa Fe, New Mexico, United States of America.

School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America.

出版信息

PLoS Comput Biol. 2014 Sep 18;10(9):e1003803. doi: 10.1371/journal.pcbi.1003803. eCollection 2014 Sep.

Abstract

Organisms have increased in complexity through a series of major evolutionary transitions, in which formerly autonomous entities become parts of a novel higher-level entity. One intriguing feature of the higher-level entity after some major transitions is a division of reproductive labor among its lower-level units in which reproduction is the sole responsibility of a subset of units. Although it can have clear benefits once established, it is unknown how such reproductive division of labor originates. We consider a recent evolution experiment on the yeast Saccharomyces cerevisiae as a unique platform to address the issue of reproductive differentiation during an evolutionary transition in individuality. In the experiment, independent yeast lineages evolved a multicellular "snowflake-like" cluster formed in response to gravity selection. Shortly after the evolution of clusters, the yeast evolved higher rates of cell death. While cell death enables clusters to split apart and form new groups, it also reduces their performance in the face of gravity selection. To understand the selective value of increased cell death, we create a mathematical model of the cellular arrangement within snowflake yeast clusters. The model reveals that the mechanism of cell death and the geometry of the snowflake interact in complex, evolutionarily important ways. We find that the organization of snowflake yeast imposes powerful limitations on the available space for new cell growth. By dying more frequently, cells in clusters avoid encountering space limitations, and, paradoxically, reach higher numbers. In addition, selection for particular group sizes can explain the increased rate of apoptosis both in terms of total cell number and total numbers of collectives. Thus, by considering the geometry of a primitive multicellular organism we can gain insight into the initial emergence of reproductive division of labor during an evolutionary transition in individuality.

摘要

生物体通过一系列重大的进化转变,其复杂性不断增加,在这些转变中,以前自主的实体成为一个新的更高层次实体的组成部分。在一些重大转变之后,更高层次实体的一个有趣特征是其较低层次单元之间的生殖劳动分工,其中繁殖是一部分单元的唯一职责。虽然一旦确立,它可能会带来明显的好处,但这种生殖劳动分工是如何起源的尚不清楚。我们将最近一项关于酿酒酵母的进化实验视为一个独特的平台,以解决个体进化转变过程中的生殖分化问题。在该实验中,独立的酵母谱系进化出了一种多细胞“雪花状”聚集体,它是对重力选择的响应而形成的。聚集体进化后不久,酵母细胞死亡的速率提高了。虽然细胞死亡使聚集体能够分裂并形成新的群体,但它也降低了聚集体在面对重力选择时的表现。为了理解细胞死亡增加的选择价值,我们创建了一个雪花酵母聚集体内细胞排列的数学模型。该模型揭示,细胞死亡机制与雪花的几何形状以复杂且对进化具有重要意义的方式相互作用。我们发现,雪花酵母的组织结构对新细胞生长的可用空间施加了强大的限制。通过更频繁地死亡,聚集体中的细胞避免遇到空间限制,而且矛盾的是,细胞数量会更多。此外,对特定群体大小的选择可以从总细胞数和集体总数两个方面解释凋亡率的增加。因此,通过考虑一种原始多细胞生物体的几何形状,我们能够深入了解个体进化转变过程中生殖劳动分工的最初出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd46/4168977/cfaef8ccdc51/pcbi.1003803.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验