Suppr超能文献

揭示热和力诱导的蛋白质去折叠过程中拓扑障碍对 Knot Untying 的阻碍作用:分子动力学模拟研究。

Revealing Topological Barriers against Knot Untying in Thermal and Mechanical Protein Unfolding by Molecular Dynamics Simulations.

机构信息

College of Electronic Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.

College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.

出版信息

Biomolecules. 2021 Nov 13;11(11):1688. doi: 10.3390/biom11111688.

Abstract

The knot is one of the most remarkable topological features identified in an increasing number of proteins with important functions. However, little is known about how the knot is formed during protein folding, and untied or maintained in protein unfolding. By means of all-atom molecular dynamics simulation, here we employ methyltransferase YbeA as the knotted protein model to analyze changes of the knotted conformation coupled with protein unfolding under thermal and mechanical denaturing conditions. Our results show that the trefoil knot in YbeA is occasionally untied via knot loosening rather than sliding under enhanced thermal fluctuations. Through correlating protein unfolding with changes in the knot position and size, several aspects of barriers that jointly suppress knot untying are revealed. In particular, protein unfolding is always prior to knot untying and starts preferentially from separation of two α-helices (α1 and α5), which protect the hydrophobic core consisting of β-sheets (β1-β4) from exposure to water. These β-sheets form a loop through which α5 is threaded to form the knot. Hydrophobic and hydrogen bonding interactions inside the core stabilize the loop against loosening. In addition, residues at N-terminal of α5 define a rigid turning to impede α5 from sliding out of the loop. Site mutations are designed to specifically eliminate these barriers, and easier knot untying is achieved under the same denaturing conditions. These results provide new molecular level insights into the folding/unfolding of knotted proteins.

摘要

结是在越来越多具有重要功能的蛋白质中发现的最显著的拓扑特征之一。然而,对于结在蛋白质折叠过程中是如何形成的,以及在蛋白质展开过程中是如何解开或维持的,人们知之甚少。通过全原子分子动力学模拟,我们在这里以甲基转移酶 YbeA 作为打结蛋白模型,分析在热和机械变性条件下,与蛋白质展开相关的结构变化。我们的结果表明,YbeA 中的三叶结偶尔会通过结松动而不是滑动解开,而不是通过增强的热波动解开。通过将蛋白质展开与结位置和大小的变化相关联,揭示了共同抑制结解开的几个方面的障碍。特别是,蛋白质展开总是先于结解开,并优先从两个α螺旋(α1 和 α5)的分离开始,这保护了由β片层(β1-β4)组成的疏水核心免受暴露于水。这些β片层形成一个环,通过该环将α5穿过以形成结。核心内的疏水和氢键相互作用稳定了环,防止其松动。此外,α5 的 N 末端的残基定义了一个刚性的转弯,以阻止α5从环中滑出。设计了定点突变来专门消除这些障碍,并且在相同的变性条件下更容易解开结。这些结果为打结蛋白的折叠/展开提供了新的分子水平见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bbb/8615548/395001227653/biomolecules-11-01688-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验