Suppr超能文献

用于转化表型遗传分析的扭曲线性混合模型。

Warped linear mixed models for the genetic analysis of transformed phenotypes.

作者信息

Fusi Nicolo, Lippert Christoph, Lawrence Neil D, Stegle Oliver

机构信息

eScience Group, Microsoft Research, Los Angeles, California 90024, USA.

Department of Computer Science, University of Sheffield, Sheffield S10 2HQ, UK.

出版信息

Nat Commun. 2014 Sep 19;5:4890. doi: 10.1038/ncomms5890.

Abstract

Linear mixed models (LMMs) are a powerful and established tool for studying genotype-phenotype relationships. A limitation of the LMM is that the model assumes Gaussian distributed residuals, a requirement that rarely holds in practice. Violations of this assumption can lead to false conclusions and loss in power. To mitigate this problem, it is common practice to pre-process the phenotypic values to make them as Gaussian as possible, for instance by applying logarithmic or other nonlinear transformations. Unfortunately, different phenotypes require different transformations, and choosing an appropriate transformation is challenging and subjective. Here we present an extension of the LMM that estimates an optimal transformation from the observed data. In simulations and applications to real data from human, mouse and yeast, we show that using transformations inferred by our model increases power in genome-wide association studies and increases the accuracy of heritability estimation and phenotype prediction.

摘要

线性混合模型(LMMs)是研究基因型与表型关系的一种强大且成熟的工具。LMM的一个局限性在于该模型假设残差呈高斯分布,而这一要求在实际中很少成立。违背这一假设可能会导致错误的结论和功效损失。为了缓解这个问题,常见的做法是对表型值进行预处理,使其尽可能呈高斯分布,例如通过应用对数或其他非线性变换。不幸的是,不同的表型需要不同的变换,而选择合适的变换具有挑战性且主观。在此,我们提出了LMM的一种扩展,它能从观测数据中估计出最优变换。在对人类、小鼠和酵母的真实数据进行的模拟和应用中,我们表明使用我们的模型推断出的变换可提高全基因组关联研究的功效,并提高遗传力估计和表型预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1a3/4199105/07fbb889ae90/ncomms5890-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验