Google Health, Palo Alto, CA, USA.
Google Health, Cambridge, MA, USA.
Nat Commun. 2022 Jan 11;13(1):241. doi: 10.1038/s41467-021-27930-0.
Genome-wide association studies (GWASs) examine the association between genotype and phenotype while adjusting for a set of covariates. Although the covariates may have non-linear or interactive effects, due to the challenge of specifying the model, GWAS often neglect such terms. Here we introduce DeepNull, a method that identifies and adjusts for non-linear and interactive covariate effects using a deep neural network. In analyses of simulated and real data, we demonstrate that DeepNull maintains tight control of the type I error while increasing statistical power by up to 20% in the presence of non-linear and interactive effects. Moreover, in the absence of such effects, DeepNull incurs no loss of power. When applied to 10 phenotypes from the UK Biobank (n = 370K), DeepNull discovered more hits (+6%) and loci (+7%), on average, than conventional association analyses, many of which are biologically plausible or have previously been reported. Finally, DeepNull improves upon linear modeling for phenotypic prediction (+23% on average).
全基因组关联研究 (GWAS) 考察了基因型与表型之间的关联,同时调整了一组协变量。尽管协变量可能具有非线性或交互作用,但由于指定模型的挑战,GWAS 通常忽略了这些术语。在这里,我们介绍了 DeepNull,这是一种使用深度神经网络识别和调整非线性和交互协变量效应的方法。在对模拟和真实数据的分析中,我们证明了 DeepNull 在存在非线性和交互作用的情况下保持了严格的 I 型错误控制,同时将统计功效提高了多达 20%。此外,在没有这些影响的情况下,DeepNull 不会损失功效。当应用于来自英国生物银行的 10 种表型(n = 370K)时,DeepNull 发现了更多的命中(平均增加 6%)和位点(平均增加 7%),其中许多是生物学上合理的或以前已经报道过的。最后,DeepNull 提高了表型预测的线性建模效果(平均提高 23%)。