Marriage Tara N, King Elizabeth G, Long Anthony D, Macdonald Stuart J
Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045.
Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697.
Genetics. 2014 Sep;198(1):45-57. doi: 10.1534/genetics.114.162107.
Animals in nature are frequently challenged by toxic compounds, from those that occur naturally in plants as a defense against herbivory, to pesticides used to protect crops. On exposure to such xenobiotic substances, animals mount a transcriptional response, generating detoxification enzymes and transporters that metabolize and remove the toxin. Genetic variation in this response can lead to variation in the susceptibility of different genotypes to the toxic effects of a given xenobiotic. Here we use Drosophila melanogaster to dissect the genetic basis of larval resistance to nicotine, a common plant defense chemical and widely used addictive drug in humans. We identified quantitative trait loci (QTL) for the trait using the DSPR (Drosophila Synthetic Population Resource), a panel of multiparental advanced intercross lines. Mapped QTL collectively explain 68.4% of the broad-sense heritability for nicotine resistance. The two largest-effect loci-contributing 50.3 and 8.5% to the genetic variation-map to short regions encompassing members of classic detoxification gene families. The largest QTL resides over a cluster of ten UDP-glucuronosyltransferase (UGT) genes, while the next largest QTL harbors a pair of cytochrome P450 genes. Using RNAseq we measured gene expression in a pair of DSPR founders predicted to harbor different alleles at both QTL and showed that Ugt86Dd, Cyp28d1, and Cyp28d2 had significantly higher expression in the founder carrying the allele conferring greater resistance. These genes are very strong candidates to harbor causative, regulatory polymorphisms that explain a large fraction of the genetic variation in larval nicotine resistance in the DSPR.
自然界中的动物经常受到有毒化合物的挑战,这些化合物包括植物中天然存在的用于抵御食草动物的物质,以及用于保护农作物的杀虫剂。接触此类外源性物质时,动物会产生转录反应,生成代谢并清除毒素的解毒酶和转运蛋白。这种反应中的基因变异会导致不同基因型对给定外源性物质毒性作用的易感性产生差异。在此,我们利用黑腹果蝇来剖析幼虫对尼古丁抗性的遗传基础,尼古丁是一种常见的植物防御化学物质,也是人类广泛使用的成瘾性药物。我们使用果蝇合成群体资源(DSPR),一组多亲本高级杂交系,来确定该性状的数量性状基因座(QTL)。定位到的QTL共同解释了尼古丁抗性广义遗传力的68.4%。两个效应最大的基因座——对遗传变异的贡献率分别为50.3%和8.5%——定位到包含经典解毒基因家族成员的短区域。最大的QTL位于十个尿苷二磷酸葡萄糖醛酸基转移酶(UGT)基因的簇上,而第二大的QTL包含一对细胞色素P450基因。我们使用RNA测序测量了一对预计在两个QTL上携带不同等位基因的DSPR亲本中的基因表达,结果表明,Ugt86Dd、Cyp28d1和Cyp28d2在携带赋予更高抗性等位基因的亲本中表达显著更高。这些基因极有可能含有因果性的、调控性的多态性,这些多态性解释了DSPR中幼虫尼古丁抗性遗传变异的很大一部分。