Suppr超能文献

利用多亲代高级杂交群体精细定位果蝇中的尼古丁抗性位点。

Fine-mapping nicotine resistance loci in Drosophila using a multiparent advanced generation inter-cross population.

作者信息

Marriage Tara N, King Elizabeth G, Long Anthony D, Macdonald Stuart J

机构信息

Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045.

Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697.

出版信息

Genetics. 2014 Sep;198(1):45-57. doi: 10.1534/genetics.114.162107.

Abstract

Animals in nature are frequently challenged by toxic compounds, from those that occur naturally in plants as a defense against herbivory, to pesticides used to protect crops. On exposure to such xenobiotic substances, animals mount a transcriptional response, generating detoxification enzymes and transporters that metabolize and remove the toxin. Genetic variation in this response can lead to variation in the susceptibility of different genotypes to the toxic effects of a given xenobiotic. Here we use Drosophila melanogaster to dissect the genetic basis of larval resistance to nicotine, a common plant defense chemical and widely used addictive drug in humans. We identified quantitative trait loci (QTL) for the trait using the DSPR (Drosophila Synthetic Population Resource), a panel of multiparental advanced intercross lines. Mapped QTL collectively explain 68.4% of the broad-sense heritability for nicotine resistance. The two largest-effect loci-contributing 50.3 and 8.5% to the genetic variation-map to short regions encompassing members of classic detoxification gene families. The largest QTL resides over a cluster of ten UDP-glucuronosyltransferase (UGT) genes, while the next largest QTL harbors a pair of cytochrome P450 genes. Using RNAseq we measured gene expression in a pair of DSPR founders predicted to harbor different alleles at both QTL and showed that Ugt86Dd, Cyp28d1, and Cyp28d2 had significantly higher expression in the founder carrying the allele conferring greater resistance. These genes are very strong candidates to harbor causative, regulatory polymorphisms that explain a large fraction of the genetic variation in larval nicotine resistance in the DSPR.

摘要

自然界中的动物经常受到有毒化合物的挑战,这些化合物包括植物中天然存在的用于抵御食草动物的物质,以及用于保护农作物的杀虫剂。接触此类外源性物质时,动物会产生转录反应,生成代谢并清除毒素的解毒酶和转运蛋白。这种反应中的基因变异会导致不同基因型对给定外源性物质毒性作用的易感性产生差异。在此,我们利用黑腹果蝇来剖析幼虫对尼古丁抗性的遗传基础,尼古丁是一种常见的植物防御化学物质,也是人类广泛使用的成瘾性药物。我们使用果蝇合成群体资源(DSPR),一组多亲本高级杂交系,来确定该性状的数量性状基因座(QTL)。定位到的QTL共同解释了尼古丁抗性广义遗传力的68.4%。两个效应最大的基因座——对遗传变异的贡献率分别为50.3%和8.5%——定位到包含经典解毒基因家族成员的短区域。最大的QTL位于十个尿苷二磷酸葡萄糖醛酸基转移酶(UGT)基因的簇上,而第二大的QTL包含一对细胞色素P450基因。我们使用RNA测序测量了一对预计在两个QTL上携带不同等位基因的DSPR亲本中的基因表达,结果表明,Ugt86Dd、Cyp28d1和Cyp28d2在携带赋予更高抗性等位基因的亲本中表达显著更高。这些基因极有可能含有因果性的、调控性的多态性,这些多态性解释了DSPR中幼虫尼古丁抗性遗传变异的很大一部分。

相似文献

2
Identifying Loci Contributing to Natural Variation in Xenobiotic Resistance in Drosophila.
PLoS Genet. 2015 Nov 30;11(11):e1005663. doi: 10.1371/journal.pgen.1005663. eCollection 2015 Nov.
3
Naturally Segregating Variation at Contributes to Nicotine Resistance in .
Genetics. 2017 Sep;207(1):311-325. doi: 10.1534/genetics.117.300058. Epub 2017 Jul 25.
5
Loci Contributing to Boric Acid Toxicity in Two Reference Populations of .
G3 (Bethesda). 2017 Jun 7;7(6):1631-1641. doi: 10.1534/g3.117.041418.
6
Using Drosophila melanogaster to identify chemotherapy toxicity genes.
Genetics. 2014 Sep;198(1):31-43. doi: 10.1534/genetics.114.161968.
8
The Beavis Effect in Next-Generation Mapping Panels in .
G3 (Bethesda). 2017 Jun 7;7(6):1643-1652. doi: 10.1534/g3.117.041426.
10
Genetic dissection of a model complex trait using the Drosophila Synthetic Population Resource.
Genome Res. 2012 Aug;22(8):1558-66. doi: 10.1101/gr.134031.111. Epub 2012 Apr 10.

引用本文的文献

3
Ecdysteroid kinase-like (EcKL) paralogs confer developmental tolerance to caffeine in .
Curr Res Insect Sci. 2022 Jan 16;2:100030. doi: 10.1016/j.cris.2022.100030. eCollection 2022.
4
Complex interactions between nicotine and resveratrol in the wing spot test.
Heliyon. 2022 Jun 17;8(6):e09744. doi: 10.1016/j.heliyon.2022.e09744. eCollection 2022 Jun.
5
Trade-offs between cost of ingestion and rate of intake drive defensive toxin use.
Biol Lett. 2022 Feb;18(2):20210579. doi: 10.1098/rsbl.2021.0579. Epub 2022 Feb 9.
6
The UDP-Glycosyltransferase Family in : Nomenclature Update, Gene Expression and Phylogenetic Analysis.
Front Physiol. 2021 Mar 17;12:648481. doi: 10.3389/fphys.2021.648481. eCollection 2021.
10
Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits.
Nat Commun. 2019 Oct 25;10(1):4872. doi: 10.1038/s41467-019-12884-1.

本文引用的文献

1
A locus in Drosophila sechellia affecting tolerance of a host plant toxin.
Genetics. 2013 Nov;195(3):1063-75. doi: 10.1534/genetics.113.154773. Epub 2013 Sep 13.
2
The molecular genetics of insecticide resistance.
Genetics. 2013 Aug;194(4):807-15. doi: 10.1534/genetics.112.141895.
3
Abundance and distribution of transposable elements in two Drosophila QTL mapping resources.
Mol Biol Evol. 2013 Oct;30(10):2311-27. doi: 10.1093/molbev/mst129. Epub 2013 Jul 24.
4
Combining genome-wide methods to investigate the genetic complexity of courtship song variation in Drosophila melanogaster.
Mol Biol Evol. 2013 Sep;30(9):2113-20. doi: 10.1093/molbev/mst111. Epub 2013 Jun 18.
5
A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.
PLoS Genet. 2013 Jun;9(6):e1003534. doi: 10.1371/journal.pgen.1003534. Epub 2013 Jun 6.
6
The genetic architecture of methotrexate toxicity is similar in Drosophila melanogaster and humans.
G3 (Bethesda). 2013 Aug 7;3(8):1301-10. doi: 10.1534/g3.113.006619.
7
Combined sequence-based and genetic mapping analysis of complex traits in outbred rats.
Nat Genet. 2013 Jul;45(7):767-75. doi: 10.1038/ng.2644. Epub 2013 May 26.
8
dusky-like is required to maintain the integrity and planar cell polarity of hairs during the development of the Drosophila wing.
Dev Biol. 2013 Jul 1;379(1):76-91. doi: 10.1016/j.ydbio.2013.04.012. Epub 2013 Apr 23.
10
21st-century hazards of smoking and benefits of cessation in the United States.
N Engl J Med. 2013 Jan 24;368(4):341-50. doi: 10.1056/NEJMsa1211128.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验