Suppr超能文献

转化生长因子β介导的抗肿瘤T细胞抑制需要FoxP1转录因子表达。

Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression.

作者信息

Stephen Tom L, Rutkowski Melanie R, Allegrezza Michael J, Perales-Puchalt Alfredo, Tesone Amelia J, Svoronos Nikolaos, Nguyen Jenny M, Sarmin Fahmida, Borowsky Mark E, Tchou Julia, Conejo-Garcia Jose R

机构信息

Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.

Helen F. Graham Cancer Center, Christiana Care Health System, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA.

出版信息

Immunity. 2014 Sep 18;41(3):427-439. doi: 10.1016/j.immuni.2014.08.012.

Abstract

Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation.

摘要

肿瘤反应性T细胞在晚期肿瘤中会变得无反应。在此,我们描述了一种由转录因子叉头框蛋白P1(Foxp1)上调驱动的癌症中T细胞无反应的常见机制,Foxp1可阻止CD8⁺T细胞增殖,并抑制其对肿瘤抗原产生颗粒酶B和干扰素-γ。因此,缺乏Foxp1的淋巴细胞可诱导无法治愈的肿瘤被排斥,并促进对肿瘤再次攻击的保护作用。从机制上讲,Foxp1在预激活的CD8⁺T细胞中与转录因子Smad2和Smad3相互作用,以响应微环境中的转化生长因子-β(TGF-β),并且对其抑制活性至关重要。因此,Smad2和Smad3介导的c-Myc抑制需要T细胞中Foxp1的表达。此外,Foxp1直接介导TGF-β诱导的c-Jun转录抑制,从而消除T细胞活性。我们的结果揭示了一种不同于无反应或耗竭的T细胞无反应的基本机制,该机制由TGF-β信号传导驱动,作用于经历Foxp1依赖性转录调控的肿瘤相关淋巴细胞。

相似文献

2
Targeting foxp1 for reinstating anticancer immunosurveillance.
Immunity. 2014 Sep 18;41(3):345-347. doi: 10.1016/j.immuni.2014.09.001.
5
Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway.
J Exp Med. 2010 Oct 25;207(11):2331-41. doi: 10.1084/jem.20101074. Epub 2010 Sep 27.
8
Transcription factor Foxp1 exerts essential cell-intrinsic regulation of the quiescence of naive T cells.
Nat Immunol. 2011 Jun;12(6):544-50. doi: 10.1038/ni.2034. Epub 2011 May 1.
9
c-Jun interacts with the corepressor TG-interacting factor (TGIF) to suppress Smad2 transcriptional activity.
Proc Natl Acad Sci U S A. 2001 May 22;98(11):6198-203. doi: 10.1073/pnas.101579798.

引用本文的文献

1
3
ScRNA-seq of gastric cancer tissues reveals differences in the immune microenvironment of primary tumors and metastases.
Oncogene. 2024 May;43(20):1549-1564. doi: 10.1038/s41388-024-03012-5. Epub 2024 Mar 30.
4
Immune landscape of hepatocellular carcinoma tumor microenvironment identifies a prognostic relevant model.
Heliyon. 2024 Jan 24;10(3):e24861. doi: 10.1016/j.heliyon.2024.e24861. eCollection 2024 Feb 15.
5
FOXP1 and KLF2 reciprocally regulate checkpoints of stem-like to effector transition in CAR T cells.
Nat Immunol. 2024 Jan;25(1):117-128. doi: 10.1038/s41590-023-01685-w. Epub 2023 Nov 27.
6
Cellular and molecular waypoints along the path of T cell exhaustion.
Sci Immunol. 2023 Sep;8(87):eadg3868. doi: 10.1126/sciimmunol.adg3868. Epub 2023 Sep 1.
7
Challenges and new technologies in adoptive cell therapy.
J Hematol Oncol. 2023 Aug 18;16(1):97. doi: 10.1186/s13045-023-01492-8.
8
Transforming Growth Factor-β1 in Cancer Immunology: Opportunities for Immunotherapy.
Adv Exp Med Biol. 2023;1408:309-328. doi: 10.1007/978-3-031-26163-3_17.
10
Regulation of T Cell Activation and Metabolism by Transforming Growth Factor-Beta.
Biology (Basel). 2023 Feb 13;12(2):297. doi: 10.3390/biology12020297.

本文引用的文献

1
Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2.
Immunity. 2013 Sep 19;39(3):611-21. doi: 10.1016/j.immuni.2013.08.025. Epub 2013 Sep 5.
2
Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells.
Sci Transl Med. 2013 Aug 28;5(200):200ra116. doi: 10.1126/scitranslmed.3006504.
3
Type III TGF-β receptor downregulation generates an immunotolerant tumor microenvironment.
J Clin Invest. 2013 Sep;123(9):3925-40. doi: 10.1172/JCI65745. Epub 2013 Aug 8.
4
Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance.
Immunity. 2013 Jul 25;39(1):74-88. doi: 10.1016/j.immuni.2013.06.014.
5
Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy.
Ann N Y Acad Sci. 2013 May;1284(1):1-5. doi: 10.1111/nyas.12105.
6
Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors.
Cancer Res. 2013 Jun 15;73(12):3591-603. doi: 10.1158/0008-5472.CAN-12-4100. Epub 2013 Apr 30.
7
T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment.
Curr Opin Immunol. 2013 Apr;25(2):214-21. doi: 10.1016/j.coi.2012.12.003. Epub 2013 Jan 6.
8
High-avidity T cells are preferentially tolerized in the tumor microenvironment.
Cancer Res. 2013 Jan 15;73(2):595-604. doi: 10.1158/0008-5472.CAN-12-1123. Epub 2012 Nov 30.
9
Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory.
Immunity. 2012 Dec 14;37(6):1130-44. doi: 10.1016/j.immuni.2012.08.021. Epub 2012 Nov 15.
10
Transcriptional regulator early growth response gene 2 (Egr2) is required for T cell anergy in vitro and in vivo.
J Exp Med. 2012 Nov 19;209(12):2157-63. doi: 10.1084/jem.20120342. Epub 2012 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验