Song Zhongdi, Chen Lei, Wang Jiangxin, Lu Yinhua, Jiang Weihong, Zhang Weiwen
From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China;
‖Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R. China.
Mol Cell Proteomics. 2014 Dec;13(12):3519-32. doi: 10.1074/mcp.M113.035675. Epub 2014 Sep 19.
To improve ethanol production directly from CO2 in photosynthetic cyanobacterial systems, one key issue that needs to be addressed is the low ethanol tolerance of cyanobacterial cells. Our previous proteomic and transcriptomic analyses found that several regulatory proteins were up-regulated by exogenous ethanol in Synechocystis sp. PCC6803. In this study, through tolerance analysis of the gene disruption mutants of the up-regulated regulatory genes, we uncovered that one transcriptional regulator, Sll0794, was related directly to ethanol tolerance in Synechocystis. Using a quantitative iTRAQ-LC-MS/MS proteomics approach coupled with quantitative real-time reverse transcription-PCR (RT-qPCR), we further determined the possible regulatory network of Sll0794. The proteomic analysis showed that in the Δsll0794 mutant grown under ethanol stress a total of 54 and 87 unique proteins were down- and up-regulated, respectively. In addition, electrophoretic mobility shift assays demonstrated that the Sll0794 transcriptional regulator was able to bind directly to the upstream regions of sll1514, slr1512, and slr1838, which encode a 16.6 kDa small heat shock protein, a putative sodium-dependent bicarbonate transporter and a carbon dioxide concentrating mechanism protein CcmK, respectively. The study provided a proteomic description of the putative ethanol-tolerance network regulated by the sll0794 gene, and revealed new insights on the ethanol-tolerance regulatory mechanism in Synechocystis. As the first regulatory protein discovered related to ethanol tolerance, the gene may serve as a valuable target for transcription machinery engineering to further improve ethanol tolerance in Synechocystis. All MS data have been deposited in the ProteomeXchange with identifier PXD001266 (http://proteomecentral.proteomexchange.org/dataset/PXD001266).
为了在光合蓝藻系统中直接提高由二氧化碳生产乙醇的效率,一个需要解决的关键问题是蓝藻细胞对乙醇的耐受性较低。我们之前的蛋白质组学和转录组学分析发现,集胞藻PCC6803中的几种调节蛋白会被外源乙醇上调。在本研究中,通过对上调调节基因的基因敲除突变体进行耐受性分析,我们发现一种转录调节因子Sll0794与集胞藻中的乙醇耐受性直接相关。使用定量iTRAQ-LC-MS/MS蛋白质组学方法结合定量实时逆转录PCR(RT-qPCR),我们进一步确定了Sll0794可能的调控网络。蛋白质组学分析表明,在乙醇胁迫下生长的Δsll0794突变体中,分别有54种和87种独特的蛋白质下调和上调。此外,电泳迁移率变动分析表明,Sll0794转录调节因子能够直接结合到sll1514、slr1512和slr1838的上游区域,它们分别编码一种16.6 kDa的小热休克蛋白、一种假定的钠依赖性碳酸氢盐转运蛋白和一种二氧化碳浓缩机制蛋白CcmK。该研究提供了由sll0794基因调控的假定乙醇耐受网络的蛋白质组学描述,并揭示了集胞藻中乙醇耐受调控机制的新见解。作为发现的第一个与乙醇耐受性相关的调节蛋白,该基因可能是转录机制工程中一个有价值的靶点,以进一步提高集胞藻中的乙醇耐受性。所有质谱数据已存入蛋白质组交换库,标识符为PXD001266(http://proteomecentral.proteomexchange.org/dataset/PXD001266)。