Suppr超能文献

计算预测和验证专家对化学探针的评估。

Computational prediction and validation of an expert's evaluation of chemical probes.

机构信息

Collaborative Drug Discovery, Inc. , 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States.

出版信息

J Chem Inf Model. 2014 Oct 27;54(10):2996-3004. doi: 10.1021/ci500445u. Epub 2014 Oct 7.

Abstract

In a decade with over half a billion dollars of investment, more than 300 chemical probes have been identified to have biological activity through NIH funded screening efforts. We have collected the evaluations of an experienced medicinal chemist on the likely chemistry quality of these probes based on a number of criteria including literature related to the probe and potential chemical reactivity. Over 20% of these probes were found to be undesirable. Analysis of the molecular properties of these compounds scored as desirable suggested higher pKa, molecular weight, heavy atom count, and rotatable bond number. We were particularly interested whether the human evaluation aspect of medicinal chemistry due diligence could be computationally predicted. We used a process of sequential Bayesian model building and iterative testing as we included additional probes. Following external validation of these methods and comparing different machine learning methods, we identified Bayesian models with accuracy comparable to other measures of drug-likeness and filtering rules created to date.

摘要

在过去十年中,NIH 资助的筛选工作已经确定了超过 30 亿个具有生物活性的化学探针。我们收集了一位经验丰富的药物化学家对这些探针的化学质量的评估,这些评估是基于多个标准的,包括与探针相关的文献和潜在的化学反应性。超过 20%的探针被认为是不理想的。对这些化合物的分子性质进行分析,得分较高的有较高的 pKa、分子量、重原子数和可旋转键数。我们特别感兴趣的是,药物化学尽职调查的人为评估是否可以通过计算预测。我们使用了一种顺序贝叶斯模型构建和迭代测试的过程,因为我们还包括了其他探针。在对这些方法进行外部验证并比较不同的机器学习方法后,我们确定了贝叶斯模型与其他药物相似性指标的准确性相当,并创建了迄今为止的筛选规则。

相似文献

1
Computational prediction and validation of an expert's evaluation of chemical probes.
J Chem Inf Model. 2014 Oct 27;54(10):2996-3004. doi: 10.1021/ci500445u. Epub 2014 Oct 7.
3
Evaluating machine learning approaches for aiding probe selection for gene-expression arrays.
Bioinformatics. 2002;18 Suppl 1:S164-71. doi: 10.1093/bioinformatics/18.suppl_1.s164.
4
Objective, Quantitative, Data-Driven Assessment of Chemical Probes.
Cell Chem Biol. 2018 Feb 15;25(2):194-205.e5. doi: 10.1016/j.chembiol.2017.11.004. Epub 2017 Dec 14.
5
Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.
J Comput Aided Mol Des. 2007 Sep;21(9):485-98. doi: 10.1007/s10822-007-9125-z. Epub 2007 Jul 14.
6
Fitness Factors for Bioorthogonal Chemical Probes.
ACS Chem Biol. 2019 Dec 20;14(12):2489-2496. doi: 10.1021/acschembio.9b00755. Epub 2019 Dec 5.
7
BELM: Bayesian extreme learning machine.
IEEE Trans Neural Netw. 2011 Mar;22(3):505-9. doi: 10.1109/TNN.2010.2103956. Epub 2011 Jan 20.
8
Structure learning for Bayesian networks as models of biological networks.
Methods Mol Biol. 2013;939:35-45. doi: 10.1007/978-1-62703-107-3_4.
9
Multi-population genomic prediction using a multi-task Bayesian learning model.
BMC Genet. 2014 May 3;15:53. doi: 10.1186/1471-2156-15-53.
10
The design and construction of a medical simulation model.
Comput Methods Programs Biomed. 1994 Feb 14;42(2):77-91. doi: 10.1016/0169-2607(94)90044-2.

引用本文的文献

1
Chemical Probes Review: Choosing the Right Path Towards Pharmacological Targets in Drug Discovery, Challenges and Future Perspectives.
Comb Chem High Throughput Screen. 2024;27(17):2544-2564. doi: 10.2174/0113862073283304231118155730.
2
Will the chemical probes please stand up?
RSC Med Chem. 2021 Jul 16;12(8):1428-1441. doi: 10.1039/d1md00138h. eCollection 2021 Aug 18.
4
Data Mining and Computational Modeling of High-Throughput Screening Datasets.
Methods Mol Biol. 2018;1755:197-221. doi: 10.1007/978-1-4939-7724-6_14.
5
Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.
Mol Pharm. 2017 Dec 4;14(12):4462-4475. doi: 10.1021/acs.molpharmaceut.7b00578. Epub 2017 Nov 13.
6
Collaborative drug discovery for More Medicines for Tuberculosis (MM4TB).
Drug Discov Today. 2017 Mar;22(3):555-565. doi: 10.1016/j.drudis.2016.10.009. Epub 2016 Nov 22.
7
Open Source Bayesian Models. 3. Composite Models for Prediction of Binned Responses.
J Chem Inf Model. 2016 Feb 22;56(2):275-85. doi: 10.1021/acs.jcim.5b00555. Epub 2016 Jan 19.
8
Predicting Mouse Liver Microsomal Stability with "Pruned" Machine Learning Models and Public Data.
Pharm Res. 2016 Feb;33(2):433-49. doi: 10.1007/s11095-015-1800-5. Epub 2015 Sep 28.
9
Open Source Bayesian Models. 1. Application to ADME/Tox and Drug Discovery Datasets.
J Chem Inf Model. 2015 Jun 22;55(6):1231-45. doi: 10.1021/acs.jcim.5b00143. Epub 2015 Jun 3.
10
A brief review of recent Charcot-Marie-Tooth research and priorities.
F1000Res. 2015 Feb 26;4:53. doi: 10.12688/f1000research.6160.1. eCollection 2015.

本文引用的文献

1
Validity of ligand efficiency metrics.
ACS Med Chem Lett. 2014 May 9;5(6):616-8. doi: 10.1021/ml500146d. eCollection 2014 Jun 12.
2
Looking back to the future: predicting in vivo efficacy of small molecules versus Mycobacterium tuberculosis.
J Chem Inf Model. 2014 Apr 28;54(4):1070-82. doi: 10.1021/ci500077v. Epub 2014 Apr 3.
3
The role of ligand efficiency metrics in drug discovery.
Nat Rev Drug Discov. 2014 Feb;13(2):105-21. doi: 10.1038/nrd4163.
4
Chemical predictive modelling to improve compound quality.
Nat Rev Drug Discov. 2013 Dec;12(12):948-62. doi: 10.1038/nrd4128.
5
An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles.
Beilstein J Org Chem. 2013 Oct 30;9:2265-319. doi: 10.3762/bjoc.9.265.
6
Enhancing hit identification in Mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models.
PLoS One. 2013 May 7;8(5):e63240. doi: 10.1371/journal.pone.0063240. Print 2013.
7
Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery.
Chem Biol. 2013 Mar 21;20(3):370-8. doi: 10.1016/j.chembiol.2013.01.011.
8
Regioselective reactions of 3,4-pyridynes enabled by the aryne distortion model.
Nat Chem. 2013 Jan;5(1):54-60. doi: 10.1038/nchem.1504. Epub 2012 Nov 25.
9
Inside the mind of a medicinal chemist: the role of human bias in compound prioritization during drug discovery.
PLoS One. 2012;7(11):e48476. doi: 10.1371/journal.pone.0048476. Epub 2012 Nov 21.
10
Rules for identifying potentially reactive or promiscuous compounds.
J Med Chem. 2012 Nov 26;55(22):9763-72. doi: 10.1021/jm301008n. Epub 2012 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验