Suppr超能文献

在晚期卵巢癌中连接预后性配体-受体信号转导环

Connecting prognostic ligand receptor signaling loops in advanced ovarian cancer.

作者信息

Eng Kevin H, Ruggeri Christina

机构信息

Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, United States of America.

出版信息

PLoS One. 2014 Sep 22;9(9):e107193. doi: 10.1371/journal.pone.0107193. eCollection 2014.

Abstract

Understanding cancer cell signal transduction is a promising lead for uncovering therapeutic targets and building treatment-specific markers for epithelial ovarian cancer. To brodaly assay the many known transmembrane receptor systems, previous studies have employed gene expression data measured on high-throughput microarrays. Starting with the knowledge of validated ligand-receptor pairs (LRPs), these studies postulate that correlation of the two genes implies functional autocrine signaling. It is our goal to consider the additional weight of evidence that prognosis (progression-free survival) can bring to prioritize ovarian cancer specific signaling mechanism. We survey three large studies of epithelial ovarian cancers, with gene expression measurements and clinical information, by modeling survival times both categorically (long/short survival) and continuously. We use differential correlation and proportional hazards regression to identify sets of LRPs that are both prognostic and correlated. Of 475 candidate LRPs, 77 show reproducible evidence of correlation; 55 show differential correlation. Survival models identify 16 LRPs with reproduced, significant interactions. Only two pairs show both interactions and correlation (PDGFA[Formula: see text]PDGFRA and COL1A1[Formula: see text]CD44) suggesting that the majority of prognostically useful LRPs act without positive feedback. We further assess the connectivity of receptors using a Gaussian graphical model finding one large graph and a number of smaller disconnected networks. These LRPs can be organized into mutually exclusive signaling clusters suggesting different mechanisms apply to different patients. We conclude that a mix of autocrine and endocrine LRPs influence prognosis in ovarian cancer, there exists a heterogenous mix of signaling themes across patients, and we point to a number of novel applications of existing targeted therapies which may benefit ovarian cancer.

摘要

了解癌细胞信号转导是发现上皮性卵巢癌治疗靶点和建立治疗特异性标志物的一个有前景的方向。为了广泛分析众多已知的跨膜受体系统,以往的研究采用了高通量微阵列测量的基因表达数据。基于已验证的配体-受体对(LRP)的知识,这些研究假设两个基因的相关性意味着功能性自分泌信号传导。我们的目标是考虑预后(无进展生存期)能带来的额外证据权重,以便优先确定卵巢癌特异性信号传导机制。我们通过对生存时间进行分类(长/短生存期)和连续建模,对三项关于上皮性卵巢癌的大型研究进行了调查,这些研究包含基因表达测量和临床信息。我们使用差异相关性和比例风险回归来识别既具有预后性又具有相关性的LRP集合。在475个候选LRP中,77个显示出可重复的相关性证据;55个显示出差异相关性。生存模型识别出16个具有重复显著相互作用的LRP。只有两对显示出相互作用和相关性(PDGFA[公式:见原文]PDGFRA和COL1A1[公式:见原文]CD44),这表明大多数对预后有用的LRP在没有正反馈的情况下起作用。我们使用高斯图形模型进一步评估受体的连通性,发现一个大的图形和一些较小的不相连网络。这些LRP可以组织成相互排斥的信号簇,表明不同的机制适用于不同的患者。我们得出结论,自分泌和内分泌LRP的混合影响卵巢癌的预后,患者之间存在信号主题的异质性混合,并且我们指出了一些现有靶向治疗的新应用,这些应用可能使卵巢癌受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5a1/4171104/e74fa7e78d2b/pone.0107193.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验