Ruggeri Christina, Eng Kevin H
Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA.
Cancer Inform. 2015 Jan 26;13(Suppl 7):67-75. doi: 10.4137/CIN.S16351. eCollection 2014.
Modeling signal transduction in cancer cells has implications for targeting new therapies and inferring the mechanisms that improve or threaten a patient's treatment response. For transcriptome-wide studies, it has been proposed that simple correlation between a ligand and receptor pair implies a relationship to the disease process. Statistically, a differential correlation (DC) analysis across groups stratified by prognosis can link the pair to clinical outcomes. While the prognostic effect and the apparent change in correlation are both biological consequences of activation of the signaling mechanism, a correlation-driven analysis does not clearly capture this assumption and makes inefficient use of continuous survival phenotypes. To augment the correlation hypothesis, we propose that a regression framework assuming a patient-specific, latent level of signaling activation exists and generates both prognosis and correlation. Data from these systems can be inferred via interaction terms in survival regression models allowing signal transduction models beyond one pair at a time and adjusting for other factors. We illustrate the use of this model on ovarian cancer data from the Cancer Genome Atlas (TCGA) and discuss how the finding may be used to develop markers to guide targeted molecular therapies.
对癌细胞中的信号转导进行建模有助于靶向新疗法并推断改善或威胁患者治疗反应的机制。对于全转录组研究,有人提出配体和受体对之间的简单相关性意味着与疾病进程存在关联。从统计学角度来看,通过预后分层的组间差异相关性(DC)分析可以将该配体对与临床结果联系起来。虽然预后效应和相关性的明显变化都是信号传导机制激活的生物学后果,但基于相关性的分析并不能明确捕捉这一假设,且对连续生存表型的利用效率低下。为了完善相关性假设,我们提出一个回归框架,假设存在患者特异性的、潜在的信号激活水平,它能同时产生预后和相关性。这些系统的数据可以通过生存回归模型中的交互项来推断,从而允许一次研究多对信号转导模型并对其他因素进行调整。我们展示了该模型在来自癌症基因组图谱(TCGA)的卵巢癌数据上的应用,并讨论了这些发现如何用于开发标志物以指导靶向分子疗法。