Marriott Poppy E, Sibout Richard, Lapierre Catherine, Fangel Jonatan U, Willats William G T, Hofte Herman, Gómez Leonardo D, McQueen-Mason Simon J
Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom;
Institut National de la Recherche Agronomique and AgroParisTech, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Équipes de Recherche Labellisées Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, RD10, F-78026 Versailles, France; and.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14601-6. doi: 10.1073/pnas.1414020111. Epub 2014 Sep 22.
Lignocellulosic plant biomass is an attractive feedstock for the production of sustainable biofuels, but the commercialization of such products is hampered by the high costs of processing this material into fermentable sugars (saccharification). One approach to lowering these costs is to produce crops with cell walls that are more susceptible to hydrolysis to reduce preprocessing and enzyme inputs. To deepen our understanding of the molecular genetic basis of lignocellulose recalcitrance, we have screened a mutagenized population of the model grass Brachypodium distachyon for improved saccharification with an industrial polysaccharide-degrading enzyme mixture. From an initial screen of 2,400 M2 plants, we selected 12 lines that showed heritable improvements in saccharification, mostly with no significant reduction in plant size or stem strength. Characterization of these putative mutants revealed a variety of alterations in cell-wall components. We have mapped the underlying genetic lesions responsible for increased saccharification using a deep sequencing approach, and here we report the mapping of one of the causal mutations to a narrow region in chromosome 2. The most likely candidate gene in this region encodes a GT61 glycosyltransferase, which has been implicated in arabinoxylan substitution. Our work shows that forward genetic screening provides a powerful route to identify factors that impact on lignocellulose digestibility, with implications for improving feedstock for cellulosic biofuel production.
木质纤维素植物生物质是生产可持续生物燃料的一种有吸引力的原料,但将这种材料加工成可发酵糖(糖化)的高成本阻碍了此类产品的商业化。降低这些成本的一种方法是培育细胞壁更易水解的作物,以减少预处理和酶的投入。为了加深我们对木质纤维素难降解分子遗传基础的理解,我们用一种工业多糖降解酶混合物筛选了模式禾本科植物短柄草的诱变群体,以提高糖化率。从对2400株M2植株的初步筛选中,我们选择了12个品系,这些品系在糖化方面表现出可遗传的改善,大多数植株大小或茎强度没有显著降低。对这些假定突变体的表征揭示了细胞壁成分的各种变化。我们使用深度测序方法定位了导致糖化增加的潜在遗传损伤,在此我们报告将其中一个因果突变定位到2号染色体的一个狭窄区域。该区域最有可能的候选基因编码一种GT61糖基转移酶,该酶与阿拉伯木聚糖取代有关。我们的工作表明,正向遗传筛选为识别影响木质纤维素消化率的因素提供了一条有力途径,这对改善纤维素生物燃料生产的原料具有重要意义。