The James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637; Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439;
The James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637; Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831;
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14372-7. doi: 10.1073/pnas.1413318111. Epub 2014 Sep 22.
Quantum spins placed on the corners of a square lattice can dimerize and form singlets, which then can be transformed into a magnetic state as the interactions between dimers increase beyond threshold. This is a strictly 2D transition in theory, but real-world materials often need the third dimension to stabilize long-range order. We use high pressures to convert sheets of Cu(2+) spin 1/2 dimers from local singlets to global antiferromagnet in the model system SrCu2(BO3)2. Single-crystal neutron diffraction measurements at pressures above 5 GPa provide a direct signature of the antiferromagnetic ordered state, whereas high-resolution neutron powder and X-ray diffraction at commensurate pressures reveal a tilting of the Cu spins out of the plane with a critical exponent characteristic of 3D transitions. The addition of anisotropic, interplane, spin-orbit terms in the venerable Shastry-Sutherland Hamiltonian accounts for the influence of the third dimension.
量子自旋放置在正方形晶格的角上可以二聚化并形成单重态,然后当二聚体之间的相互作用超过阈值时,它们可以转化为磁状态。这在理论上是一个严格的 2D 转变,但现实世界中的材料通常需要第三个维度来稳定长程有序。我们使用高压将 Cu(2+)自旋 1/2 二聚体的薄片从局部单重态转换为模型体系 SrCu2(BO3)2 中的全局反铁磁体。在 5 GPa 以上压力下进行的单晶中子衍射测量提供了反铁磁有序状态的直接特征,而在压合压力下进行的高分辨率中子粉末和 X 射线衍射揭示了 Cu 自旋从平面倾斜出来的情况,其临界指数具有 3D 转变的特征。古老的 Shastry-Sutherland 哈密顿量中各向异性的、层间的、自旋轨道项解释了第三维的影响。