Al Harraq A, Lee J G, Bharti B
Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
Sci Adv. 2020 May 8;6(19):eaba5337. doi: 10.1126/sciadv.aba5337. eCollection 2020 May.
Suprastructures at the colloidal scale must be assembled with precise control over local interactions to accurately mimic biological complexes. The toughest design requirements include breaking the symmetry of assembly in a simple and reversible fashion to unlock functions and properties so far limited to living matter. We demonstrate a simple experimental technique to program magnetic field-induced interactions between metallodielectric patchy particles and isotropic, nonmagnetic "satellite" particles. By controlling the connectivity, composition, and distribution of building blocks, we show the assembly of three-dimensional, multicomponent supraparticles that can dynamically reconfigure in response to change in external field strength. The local arrangement of building blocks and their reconfigurability are governed by a balance of attraction and repulsion between oppositely polarized domains, which we illustrate theoretically and tune experimentally. Tunable, bulk assembly of colloidal matter with predefined symmetry provides a platform to design functional microstructured materials with preprogrammable physical and chemical properties.
在胶体尺度上的超结构必须通过对局部相互作用进行精确控制来组装,以准确模拟生物复合物。最严格的设计要求包括以简单且可逆的方式打破组装的对称性,以解锁迄今为止仅限于生物物质的功能和特性。我们展示了一种简单的实验技术,用于对金属介电片状颗粒与各向同性、非磁性“卫星”颗粒之间的磁场诱导相互作用进行编程。通过控制构建块的连通性、组成和分布,我们展示了三维多组分超粒子的组装,这些超粒子可以响应外部场强的变化而动态重新配置。构建块的局部排列及其可重构性由相反极化域之间的吸引和排斥平衡决定,我们从理论上对此进行了说明并通过实验进行了调节。具有预定义对称性的胶体物质的可调谐体组装提供了一个平台,用于设计具有可预编程物理和化学性质的功能性微结构材料。