Burré Jacqueline, Sharma Manu, Südhof Thomas C
Department of Molecular and Cellular Physiology and.
Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA 94305
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4274-83. doi: 10.1073/pnas.1416598111. Epub 2014 Sep 22.
Physiologically, α-synuclein chaperones soluble NSF attachment protein receptor (SNARE) complex assembly and may also perform other functions; pathologically, in contrast, α-synuclein misfolds into neurotoxic aggregates that mediate neurodegeneration and propagate between neurons. In neurons, α-synuclein exists in an equilibrium between cytosolic and membrane-bound states. Cytosolic α-synuclein appears to be natively unfolded, whereas membrane-bound α-synuclein adopts an α-helical conformation. Although the majority of studies showed that cytosolic α-synuclein is monomeric, it is unknown whether membrane-bound α-synuclein is also monomeric, and whether chaperoning of SNARE complex assembly by α-synuclein involves its cytosolic or membrane-bound state. Here, we show using chemical cross-linking and fluorescence resonance energy transfer (FRET) that α-synuclein multimerizes into large homomeric complexes upon membrane binding. The FRET experiments indicated that the multimers of membrane-bound α-synuclein exhibit defined intermolecular contacts, suggesting an ordered array. Moreover, we demonstrate that α-synuclein promotes SNARE complex assembly at the presynaptic plasma membrane in its multimeric membrane-bound state, but not in its monomeric cytosolic state. Our data delineate a folding pathway for α-synuclein that ranges from a monomeric, natively unfolded form in cytosol to a physiologically functional, multimeric form upon membrane binding, and show that only the latter but not the former acts as a SNARE complex chaperone at the presynaptic terminal, and may protect against neurodegeneration.
从生理角度来看,α-突触核蛋白可协助可溶性N-乙基马来酰亚胺敏感因子附着蛋白受体(SNARE)复合体的组装,并且可能还具有其他功能;相反,从病理角度而言,α-突触核蛋白会错误折叠成神经毒性聚集体,介导神经退行性变并在神经元之间传播。在神经元中,α-突触核蛋白存在于胞质和膜结合状态之间的平衡中。胞质中的α-突触核蛋白似乎处于天然未折叠状态,而膜结合的α-突触核蛋白则呈现α-螺旋构象。尽管大多数研究表明胞质中的α-突触核蛋白是单体形式,但尚不清楚膜结合的α-突触核蛋白是否也是单体形式,以及α-突触核蛋白对SNARE复合体组装的协助作用是否涉及其胞质或膜结合状态。在此,我们通过化学交联和荧光共振能量转移(FRET)表明,α-突触核蛋白在膜结合后会多聚化形成大型同源复合体。FRET实验表明,膜结合的α-突触核蛋白多聚体表现出明确的分子间相互作用,提示其排列有序。此外,我们证明α-突触核蛋白在其多聚体膜结合状态下能促进突触前质膜上SNARE复合体的组装,但在其单体胞质状态下则不能。我们的数据描绘了α-突触核蛋白的一条折叠途径,从胞质中的单体、天然未折叠形式到膜结合后的生理功能多聚体形式,并表明只有后者而非前者在突触前末端充当SNARE复合体伴侣蛋白,且可能预防神经退行性变。