Suppr超能文献

相似文献

1
A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction.
RNA. 2014 Nov;20(11):1732-46. doi: 10.1261/rna.044362.114. Epub 2014 Sep 22.
2
Trans-splicing with the group I intron ribozyme from Azoarcus.
RNA. 2014 Feb;20(2):202-13. doi: 10.1261/rna.041012.113. Epub 2013 Dec 16.
3
A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
J Mol Biol. 2000 Sep 15;302(2):339-58. doi: 10.1006/jmbi.2000.4056.
4
Characterization of the Azoarcus ribozyme: tight binding to guanosine and substrate by an unusually small group I ribozyme.
Biochim Biophys Acta. 1999 Dec 23;1489(2-3):281-92. doi: 10.1016/s0167-4781(99)00200-6.
5
Differential Assembly of Catalytic Interactions within the Conserved Active Sites of Two Ribozymes.
PLoS One. 2016 Aug 8;11(8):e0160457. doi: 10.1371/journal.pone.0160457. eCollection 2016.
8
Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
Biochemistry. 1994 Dec 13;33(49):14935-47. doi: 10.1021/bi00253a033.

引用本文的文献

2
Slow molecular recognition by RNA.
RNA. 2017 Dec;23(12):1745-1753. doi: 10.1261/rna.062026.117. Epub 2017 Sep 28.
3
Physics-based all-atom modeling of RNA energetics and structure.
Wiley Interdiscip Rev RNA. 2017 Sep;8(5). doi: 10.1002/wrna.1422.
4
Nucleobases Undergo Dynamic Rearrangements during RNA Tertiary Folding.
J Mol Biol. 2016 Nov 6;428(22):4490-4502. doi: 10.1016/j.jmb.2016.09.015. Epub 2016 Sep 29.
5
6
Differential Assembly of Catalytic Interactions within the Conserved Active Sites of Two Ribozymes.
PLoS One. 2016 Aug 8;11(8):e0160457. doi: 10.1371/journal.pone.0160457. eCollection 2016.
7
Mimicking Ribosomal Unfolding of RNA Pseudoknot in a Protein Channel.
J Am Chem Soc. 2015 Dec 23;137(50):15742-52. doi: 10.1021/jacs.5b07910. Epub 2015 Dec 10.

本文引用的文献

1
Trans-splicing with the group I intron ribozyme from Azoarcus.
RNA. 2014 Feb;20(2):202-13. doi: 10.1261/rna.041012.113. Epub 2013 Dec 16.
2
Cooperative tertiary interaction network guides RNA folding.
Cell. 2012 Apr 13;149(2):348-57. doi: 10.1016/j.cell.2012.01.057.
3
Thermodynamic evidence for negative charge stabilization by a catalytic metal ion within an RNA active site.
ACS Chem Biol. 2012 Feb 17;7(2):294-9. doi: 10.1021/cb200202q. Epub 2011 Nov 4.
4
The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins.
J Biol Chem. 2011 Oct 28;286(43):37304-12. doi: 10.1074/jbc.M111.287706. Epub 2011 Aug 30.
5
Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles.
Biochemistry. 2011 Oct 11;50(40):8733-55. doi: 10.1021/bi2008245. Epub 2011 Sep 19.
6
Catalytic activity as a probe of native RNA folding.
Methods Enzymol. 2009;468:195-218. doi: 10.1016/S0076-6879(09)68010-1. Epub 2009 Nov 17.
7
Transient tether between the SRP RNA and SRP receptor ensures efficient cargo delivery during cotranslational protein targeting.
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7698-703. doi: 10.1073/pnas.1002968107. Epub 2010 Apr 12.
8
Multiple native states reveal persistent ruggedness of an RNA folding landscape.
Nature. 2010 Feb 4;463(7281):681-4. doi: 10.1038/nature08717.
9
A relaxed active site after exon ligation by the group I intron.
Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5699-704. doi: 10.1073/pnas.0712016105. Epub 2008 Apr 11.
10
Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone.
Nature. 2007 Oct 25;449(7165):1014-8. doi: 10.1038/nature06235.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验