Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA.
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7698-703. doi: 10.1073/pnas.1002968107. Epub 2010 Apr 12.
Kinetic control of macromolecular interactions plays key roles in biological regulation. An example of such control occurs in cotranslational protein targeting by the signal recognition particle (SRP), during which the SRP RNA and the cargo both accelerate complex assembly between the SRP and SRP receptor FtsY 10(2)-fold. The molecular mechanism underlying these rate accelerations was unclear. Here we show that a highly conserved basic residue, Lys399, on the lateral surface of FtsY provides a novel RNA tetraloop receptor to mediate the SRP RNA- and cargo-induced acceleration of SRP-FtsY complex assembly. We propose that the SRP RNA, by using its tetraloop to interact with FtsY-Lys399, provides a transient tether to stabilize the early stage and transition state of complex formation; this accelerates the assembly of a stable SRP-FtsY complex and allows the loading of cargo to be efficiently coupled to its membrane delivery. The use of a transient tether to increase the lifetime of collisional intermediates and reduce the dimension of diffusional search represents a novel and effective mechanism to accelerate macromolecular interactions.
动力学控制在生物调控中发挥着关键作用。这种控制的一个例子发生在信号识别颗粒 (SRP) 的共翻译蛋白靶向中,在此过程中,SRP RNA 和货物都加速了 SRP 和 SRP 受体 FtsY 之间的复合物组装 10 倍。这些速率加速的分子机制尚不清楚。在这里,我们表明 FtsY 侧表面上的高度保守的碱性残基 Lys399 提供了一种新的 RNA 四联体环受体,以介导 SRP RNA 和货物诱导的 SRP-FtsY 复合物组装的加速。我们提出,SRP RNA 通过使用其四联体环与 FtsY-Lys399 相互作用,提供了一个瞬时系链来稳定复合物形成的早期阶段和过渡态;这加速了稳定的 SRP-FtsY 复合物的组装,并允许货物的加载有效地与其膜传递偶联。使用瞬时系链来增加碰撞中间体的寿命并降低扩散搜索的维度,代表了一种新颖且有效的加速大分子相互作用的机制。