Suppr超能文献

基于物理学的RNA能量学与结构的全原子建模

Physics-based all-atom modeling of RNA energetics and structure.

作者信息

Smith Louis G, Zhao Jianbo, Mathews David H, Turner Douglas H

机构信息

Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.

Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, NY, USA.

出版信息

Wiley Interdiscip Rev RNA. 2017 Sep;8(5). doi: 10.1002/wrna.1422.

Abstract

The database of RNA sequences is exploding, but knowledge of energetics, structures, and dynamics lags behind. All-atom computational methods, such as molecular dynamics, hold promise for closing this gap. New algorithms and faster computers have accelerated progress in improving the reliability and accuracy of predictions. Currently, the methods can facilitate refinement of experimentally determined nuclear magnetic resonance and x-ray structures, but are 'unreliable' for predictions based only on sequence. Much remains to be discovered, however, about the many molecular interactions driving RNA folding and the best way to approximate them quantitatively. The large number of parameters required means that a wide variety of experimental results will be required to benchmark force fields and different approaches. As computational methods become more reliable and accessible, they will be used by an increasing number of biologists, much as x-ray crystallography has expanded. Thus, many fundamental physical principles underlying the computational methods are described. This review presents a summary of the current state of molecular dynamics as applied to RNA. It is designed to be helpful to students, postdoctoral fellows, and faculty who are considering or starting computational studies of RNA. WIREs RNA 2017, 8:e1422. doi: 10.1002/wrna.1422.

摘要

RNA序列数据库正呈爆炸式增长,但在能量学、结构和动力学方面的知识却滞后了。诸如分子动力学之类的全原子计算方法有望弥补这一差距。新算法和更快的计算机加速了提高预测可靠性和准确性方面的进展。目前,这些方法有助于完善通过实验确定的核磁共振和X射线结构,但仅基于序列进行预测时则“不可靠”。然而,关于驱动RNA折叠的众多分子相互作用以及对其进行定量近似的最佳方法,仍有许多有待发现。所需参数数量众多意味着需要大量各种实验结果来对标力场和不同方法。随着计算方法变得更加可靠且易于使用,越来越多的生物学家将会使用它们,就像X射线晶体学得到广泛应用一样。因此,本文描述了计算方法背后的许多基本物理原理。本综述总结了应用于RNA的分子动力学的当前状态。其旨在对正在考虑或开始进行RNA计算研究的学生、博士后和教员有所帮助。《WIREs RNA》2017年,8:e1422。doi:10.1002/wrna.1422 。

相似文献

2
Ab initio RNA folding.从头开始的RNA折叠
J Phys Condens Matter. 2015 Jun 17;27(23):233102. doi: 10.1088/0953-8984/27/23/233102. Epub 2015 May 20.
4
Coarse-grained modeling of RNA 3D structure.RNA三维结构的粗粒度建模。
Methods. 2016 Jul 1;103:138-56. doi: 10.1016/j.ymeth.2016.04.026. Epub 2016 Apr 25.
5
Ions and RNA folding.离子与RNA折叠。
Annu Rev Biophys Biomol Struct. 2005;34:221-43. doi: 10.1146/annurev.biophys.34.040204.144511.
10
Macromolecular modeling with rosetta.使用Rosetta进行大分子建模。
Annu Rev Biochem. 2008;77:363-82. doi: 10.1146/annurev.biochem.77.062906.171838.

引用本文的文献

本文引用的文献

3
Predicting the Kinetics of RNA Oligonucleotides Using Markov State Models.使用马尔可夫状态模型预测RNA寡核苷酸的动力学
J Chem Theory Comput. 2017 Feb 14;13(2):926-934. doi: 10.1021/acs.jctc.6b00982. Epub 2017 Jan 5.
4
Free Energy Landscape of GAGA and UUCG RNA Tetraloops.GAGA和UUCG RNA四环的自由能景观
J Phys Chem Lett. 2016 Oct 20;7(20):4032-4038. doi: 10.1021/acs.jpclett.6b01905. Epub 2016 Sep 28.
5
The expanding world of DNA and RNA.不断扩展的DNA和RNA世界。
Curr Opin Chem Biol. 2016 Oct;34:80-87. doi: 10.1016/j.cbpa.2016.08.001. Epub 2016 Aug 24.
10
Empirical Corrections to the Amber RNA Force Field with Target Metadynamics.基于目标元动力学对Amber RNA力场的经验校正。
J Chem Theory Comput. 2016 Jun 14;12(6):2790-8. doi: 10.1021/acs.jctc.6b00299. Epub 2016 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验