Suppr超能文献

与野生大熊猫寄生虫易感性相关的主要组织相容性复合体等位基因

Major histocompatibility complex alleles associated with parasite susceptibility in wild giant pandas.

作者信息

Zhang L, Wu Q, Hu Y, Wu H, Wei F

机构信息

Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

出版信息

Heredity (Edinb). 2015 Jan;114(1):85-93. doi: 10.1038/hdy.2014.73. Epub 2014 Sep 24.

Abstract

Major histocompatibility complex (MHC) polymorphism is thought to be driven by antagonistic coevolution between pathogens and hosts, mediated through either overdominance or frequency-dependent selection. However, investigations under natural conditions are still rare for endangered mammals which often exhibit depleted variation, and the mechanism of selection underlying the maintenance of characteristics remains a considerable debate. In this study, 87 wild giant pandas were used to investigate MHC variation associated with parasite load. With the knowledge of the MHC profile provided by the genomic data of the giant panda, seven DRB1, seven DQA1 and eight DQA2 alleles were identified at each single locus. Positive selection evidenced by a significantly higher number of non-synonymous substitutions per non-synonymous codon site relative to synonymous substitutions per synonymous codon site could only be detected at the DRB1 locus, which leads to the speculation that DRB1 may have a more important role in dealing with parasite infection for pandas. Coprological analyses revealed that 55.17% of individuals exhibited infection with 1-2 helminthes and 95.3% of infected pandas carried Baylisascaris shroederi. Using a generalized linear model, we found that Aime-DRB1*10 was significantly associated with parasite infection, but no resistant alleles could be detected. MHC heterozygosity of the pandas was found to be uncorrelated with the infection status or the infection intensity. These results suggested that the possible selection mechanisms in extant wild pandas may be frequency dependent rather than being determined by overdominance selection. Our findings could guide the candidate selection for the ongoing reintroduction or translocation of pandas.

摘要

主要组织相容性复合体(MHC)多态性被认为是由病原体与宿主之间的对抗性协同进化驱动的,这种协同进化通过超显性或频率依赖选择介导。然而,对于经常表现出变异减少的濒危哺乳动物,在自然条件下的研究仍然很少,维持这些特征的选择机制仍然存在相当大的争议。在本研究中,87只野生大熊猫被用于研究与寄生虫负荷相关的MHC变异。根据大熊猫基因组数据提供的MHC图谱信息,在每个单一位点分别鉴定出7个DRB1、7个DQA1和8个DQA2等位基因。只有在DRB1位点检测到非同义密码子位点上的非同义替换数量相对于同义密码子位点上的同义替换数量显著更高,从而证明存在正选择,这导致推测DRB1可能在大熊猫应对寄生虫感染方面发挥更重要的作用。粪便学分析显示,55.17%的个体感染了1 - 2种蠕虫,95.3%的感染大熊猫携带了斯氏贝蛔虫。使用广义线性模型,我们发现Aime - DRB1*10与寄生虫感染显著相关,但未检测到抗性等位基因。发现大熊猫的MHC杂合性与感染状态或感染强度无关。这些结果表明,现存野生大熊猫中可能的选择机制可能是频率依赖性的,而不是由超显性选择决定的。我们的研究结果可为正在进行的大熊猫放归或迁移的候选选择提供指导。

相似文献

1
Major histocompatibility complex alleles associated with parasite susceptibility in wild giant pandas.
Heredity (Edinb). 2015 Jan;114(1):85-93. doi: 10.1038/hdy.2014.73. Epub 2014 Sep 24.
4
MHC-associated load informs the giant panda reintroduction program.
Int J Parasitol Parasites Wildl. 2020 May 28;12:113-120. doi: 10.1016/j.ijppaw.2020.05.010. eCollection 2020 Aug.
5
Major histocompatibility complex class II variation in the giant panda (Ailuropoda melanoleuca).
Mol Ecol. 2006 Aug;15(9):2441-50. doi: 10.1111/j.1365-294X.2006.02966.x.
7
Baylisascaris schroederi Infection in Giant Pandas (Ailuropoda melanoleuca) in Foping National Nature Reserve, China.
J Wildl Dis. 2017 Oct;53(4):854-858. doi: 10.7589/2016-08-190. Epub 2017 Jul 12.
10
Genomic Signatures of Coevolution between Nonmodel Mammals and Parasitic Roundworms.
Mol Biol Evol. 2021 Jan 23;38(2):531-544. doi: 10.1093/molbev/msaa243.

引用本文的文献

3
Depletion of MHC supertype during domestication can compromise immunocompetence.
Mol Ecol. 2021 Feb;30(3):736-746. doi: 10.1111/mec.15763. Epub 2020 Dec 22.
4
Major histocompatibility complex variation is similar in little brown bats before and after white-nose syndrome outbreak.
Ecol Evol. 2020 Aug 31;10(18):10031-10043. doi: 10.1002/ece3.6662. eCollection 2020 Sep.
5
Pathogens Shape Sex Differences in Mammalian Aging.
Trends Parasitol. 2020 Aug;36(8):668-676. doi: 10.1016/j.pt.2020.05.004. Epub 2020 May 7.
6
MHC-associated load informs the giant panda reintroduction program.
Int J Parasitol Parasites Wildl. 2020 May 28;12:113-120. doi: 10.1016/j.ijppaw.2020.05.010. eCollection 2020 Aug.
7
Transcriptome analysis reveals immune-related gene expression changes with age in giant panda () blood.
Aging (Albany NY). 2019 Jan 14;11(1):249-262. doi: 10.18632/aging.101747.
8
No evidence for MHC-based mate choice in wild giant pandas.
Ecol Evol. 2018 Aug 1;8(17):8642-8651. doi: 10.1002/ece3.4419. eCollection 2018 Sep.
9
Metagenomic Analysis of Bacteria, Fungi, Bacteriophages, and Helminths in the Gut of Giant Pandas.
Front Microbiol. 2018 Jul 31;9:1717. doi: 10.3389/fmicb.2018.01717. eCollection 2018.
10
Parasites of the Giant Panda: A Risk Factor in the Conservation of a Species.
Adv Parasitol. 2018;99:1-33. doi: 10.1016/bs.apar.2017.12.003. Epub 2018 Feb 16.

本文引用的文献

1
ANALYZING TABLES OF STATISTICAL TESTS.
Evolution. 1989 Jan;43(1):223-225. doi: 10.1111/j.1558-5646.1989.tb04220.x.
3
Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation.
Nat Genet. 2013 Jan;45(1):67-71. doi: 10.1038/ng.2494. Epub 2012 Dec 16.
4
Black and white and read all over: the past, present and future of giant panda genetics.
Mol Ecol. 2012 Dec;21(23):5660-74. doi: 10.1111/mec.12096. Epub 2012 Nov 7.
5
Quantifying landscape linkages among giant panda subpopulations in regional scale conservation.
Integr Zool. 2012 Jun;7(2):165-74. doi: 10.1111/j.1749-4877.2012.00281.x.
7
genepop'007: a complete re-implementation of the genepop software for Windows and Linux.
Mol Ecol Resour. 2008 Jan;8(1):103-6. doi: 10.1111/j.1471-8286.2007.01931.x.
10
The parasites of giant pandas: individual-based measurement in wild animals.
J Wildl Dis. 2011 Jan;47(1):164-71. doi: 10.7589/0090-3558-47.1.164.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验